Total Nb of available Diagnostics: ndiagt= 331 ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 1 |SDIAG1 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #1 2 |SDIAG2 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #2 3 |SDIAG3 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #3 4 |SDIAG4 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #4 5 |SDIAG5 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #5 6 |SDIAG6 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #6 7 |SDIAG7 | 1 | |SU L1|user-defined |User-Defined U.pt Surface Diagnostic #7 8 |SDIAG8 | 1 | |SV L1|user-defined |User-Defined V.pt Surface Diagnostic #8 9 |SDIAG9 | 1 | 10 |UU L1|user-defined |User-Defined U.vector Surface Diag. #9 10 |SDIAG10 | 1 | 9 |VV L1|user-defined |User-Defined V.vector Surface Diag. #10 11 |UDIAG1 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #1 12 |UDIAG2 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #2 13 |UDIAG3 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #3 14 |UDIAG4 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #4 15 |UDIAG5 | 50 | |SU MR|user-defined |User-Defined U.pt Model-Level Diag. #5 16 |UDIAG6 | 50 | |SV MR|user-defined |User-Defined V.pt Model-Level Diag. #6 17 |UDIAG7 | 50 | 18 |UUR MR|user-defined |User-Defined U.vector Model-Lev Diag.#7 18 |UDIAG8 | 50 | 17 |VVR MR|user-defined |User-Defined V.vector Model-Lev Diag.#8 19 |UDIAG9 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #9 20 |UDIAG10 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #10 21 |SDIAGC | 1 | 22 |SM C L1|user-defined |User-Defined Counted Surface Diagnostic 22 |SDIAGCC | 1 | |SM L1|count |User-Defined Surface Diagnostic Counter 23 |ETAN | 1 | |SM M1|m |Surface Height Anomaly 24 |ETANSQ | 1 | |SM P M1|m^2 |Square of Surface Height Anomaly 25 |DETADT2 | 1 | |SM M1|m^2/s^2 |Square of Surface Height Anomaly Tendency 26 |THETA | 50 | |SMR MR|degC |Potential Temperature 27 |SALT | 50 | |SMR MR|psu |Salinity 28 |DIFFKrBG| 50 | |SM MR|m2/s |Background diffkr 29 |THETADR | 50 | |SM MR|degC.m |Potential Temperature weighted drF 30 |SALTDR | 50 | |SM MR|psu.m |Salinity weighted drF 31 |DTHETADR| 50 | |SM LR|degC/m |vertical gradient d.theta/dr (degC/r_unit) 32 |DSALTDR | 50 | |SM LR|degC/m |vertical gradient d.salt/dr (g/kg/r_unit) 33 |RELHUM | 50 | |SMR MR|percent |Relative Humidity 34 |SALTanom| 50 | |SMR MR|psu |Salt anomaly (=SALT-35; g/kg) 35 |UVEL | 50 | 36 |UUR MR|m/s |Zonal Component of Velocity (m/s) 36 |VVEL | 50 | 35 |VVR MR|m/s |Meridional Component of Velocity (m/s) 37 |WVEL | 50 | |WM LR|m/s |Vertical Component of Velocity (r_units/s) 38 |THETASQ | 50 | |SMRP MR|degC^2 |Square of Potential Temperature 39 |SALTSQ | 50 | |SMRP MR|(psu)^2 |Square of Salinity 40 |SALTSQan| 50 | |SMRP MR|(psu)^2 |Square of Salt anomaly (=(SALT-35)^2 (g^2/kg^2) 41 |UVELSQ | 50 | 42 |UURP MR|m^2/s^2 |Square of Zonal Comp of Velocity (m^2/s^2) 42 |VVELSQ | 50 | 41 |VVRP MR|m^2/s^2 |Square of Meridional Comp of Velocity (m^2/s^2) 43 |WVELSQ | 50 | |WM P LR|m^2/s^2 |Square of Vertical Comp of Velocity 44 |UE_VEL_C| 50 | 45 |UMR MR|m/s |Eastward Velocity (m/s) (cell center) 45 |VN_VEL_C| 50 | 44 |VMR MR|m/s |Northward Velocity (m/s) (cell center) 46 |UV_VEL_C| 50 | 46 |UMR MR|m^2/s^2 |Product of horizontal Comp of velocity (cell center) 47 |UV_VEL_Z| 50 | 47 |UZR MR|m^2/s^2 |Meridional Transport of Zonal Momentum (m^2/s^2) 48 |WU_VEL | 50 | |WU LR|m.m/s^2 |Vertical Transport of Zonal Momentum 49 |WV_VEL | 50 | |WV LR|m.m/s^2 |Vertical Transport of Meridional Momentum 50 |UVELMASS| 50 | 51 |UUr MR|m/s |Zonal Mass-Weighted Comp of Velocity (m/s) 51 |VVELMASS| 50 | 50 |VVr MR|m/s |Meridional Mass-Weighted Comp of Velocity (m/s) 52 |WVELMASS| 50 | |WM LR|m/s |Vertical Mass-Weighted Comp of Velocity 53 |PhiVEL | 50 | 50 |SMR P MR|m^2/s |Horizontal Velocity Potential (m^2/s) 54 |PsiVEL | 50 | 53 |SZ P MR|m.m^2/s |Horizontal Velocity Stream-Function 55 |UTHMASS | 50 | 56 |UUr MR|degC.m/s |Zonal Mass-Weight Transp of Pot Temp 56 |VTHMASS | 50 | 55 |VVr MR|degC.m/s |Meridional Mass-Weight Transp of Pot Temp 57 |WTHMASS | 50 | |WM LR|degC.m/s |Vertical Mass-Weight Transp of Pot Temp (K.m/s) 58 |USLTMASS| 50 | 59 |UUr MR|psu.m/s |Zonal Mass-Weight Transp of Salinity 59 |VSLTMASS| 50 | 58 |VVr MR|psu.m/s |Meridional Mass-Weight Transp of Salinity 60 |WSLTMASS| 50 | |WM LR|psu.m/s |Vertical Mass-Weight Transp of Salinity 61 |UVELTH | 50 | 62 |UUR MR|degC.m/s |Zonal Transport of Pot Temp 62 |VVELTH | 50 | 61 |VVR MR|degC.m/s |Meridional Transport of Pot Temp 63 |WVELTH | 50 | |WM LR|degC.m/s |Vertical Transport of Pot Temp 64 |UVELSLT | 50 | 65 |UUR MR|psu.m/s |Zonal Transport of Salinity 65 |VVELSLT | 50 | 64 |VVR MR|psu.m/s |Meridional Transport of Salinity 66 |WVELSLT | 50 | |WM LR|psu.m/s |Vertical Transport of Salinity 67 |UVELPHI | 50 | 68 |UUr MR|m^3/s^3 |Zonal Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly 68 |VVELPHI | 50 | 67 |VVr MR|m^3/s^3 |Merid. Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly 69 |RHOAnoma| 50 | |SMR MR|kg/m^3 |Density Anomaly (=Rho-rhoConst) 70 |RHOANOSQ| 50 | |SMRP MR|kg^2/m^6 |Square of Density Anomaly (=(Rho-rhoConst)^2) 71 |URHOMASS| 50 | 72 |UUr MR|kg/m^2/s |Zonal Transport of Density 72 |VRHOMASS| 50 | 71 |VVr MR|kg/m^2/s |Meridional Transport of Density 73 |WRHOMASS| 50 | |WM LR|kg/m^2/s |Vertical Transport of Density 74 |WdRHO_P | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^k(Rho)_at-const-P 75 |WdRHOdP | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^k(Rho)_at-const-T,S 76 |PHIHYD | 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho) Anomaly 77 |PHIHYDSQ| 50 | |SMRP MR|m^4/s^4 |Square of Hyd. Pressure Pot.(p/rho) Anomaly 78 |PHIBOT | 1 | |SM M1|m^2/s^2 |Bottom Pressure Pot.(p/rho) Anomaly 79 |PHIBOTSQ| 1 | |SM P M1|m^4/s^4 |Square of Bottom Pressure Pot.(p/rho) Anomaly 80 |PHI_SURF| 1 | |SM M1|m^2/s^2 |Surface Dynamical Pressure Pot.(p/rho) 81 |PHIHYDcR| 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho) Anomaly @ const r 82 |DRF | 50 | |SMR MR|m |DRF 83 |HFACC0 | 50 | |SMR MR|Unitless (frac) |hFacC fraction [0,1], time0 in forward_step 84 |HFACS0 | 50 | 85 |VVr MR|Unitless (frac) |hFacS fraction [0,1], time0 in forward_step 85 |HFACW0 | 50 | 84 |UUr MR|Unitless (frac) |hFacW fraction [0,1], time0 in forward_step 86 |HFACC1 | 50 | |SMR MR|Unitless (frac) |hFacC fraction [0,1], time1 in forward_step 87 |HFACS1 | 50 | 88 |VVr MR|Unitless (frac) |hFacS fraction [0,1], time1 in forward_step 88 |HFACW1 | 50 | 87 |UUr MR|Unitless (frac) |hFacW fraction [0,1], time1 in forward_step 89 |HFACC2 | 50 | |SMR MR|Unitless (frac) |hFacC fraction [0,1], time2 in forward_step 90 |HFACS2 | 50 | 91 |VVr MR|Unitless (frac) |hFacS fraction [0,1], time2 in forward_step 91 |HFACW2 | 50 | 90 |UUr MR|Unitless (frac) |hFacW fraction [0,1], time2 in forward_step 92 |MXLDEPTH| 1 | |SM M1|m |Mixed-Layer Depth (>0) 93 |DRHODR | 50 | |SM LR|kg/m^4 |Stratification: d.Sigma/dr (kg/m3/r_unit) 94 |CONVADJ | 50 | |SMR LR|fraction |Convective Adjustment Index [0-1] 95 |oceTAUX | 1 | 96 |UU U1|N/m^2 |zonal surface wind stress, >0 increases uVel 96 |oceTAUY | 1 | 95 |VV U1|N/m^2 |meridional surf. wind stress, >0 increases vVel 97 |atmPload| 1 | |SM U1|Pa |Atmospheric pressure loading 98 |sIceLoad| 1 | |SM U1|kg/m^2 |sea-ice loading (in Mass of ice+snow / area unit) 99 |oceFWflx| 1 | |SM U1|kg/m^2/s |net surface Fresh-Water flux into the ocean (+=down), >0 decreases salinity ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 100 |oceSflux| 1 | |SM U1|g/m^2/s |net surface Salt flux into the ocean (+=down), >0 increases salinity 101 |oceQnet | 1 | |SM U1|W/m^2 |net surface heat flux into the ocean (+=down), >0 increases theta 102 |oceQsw | 1 | |SM U1|W/m^2 |net Short-Wave radiation (+=down), >0 increases theta 103 |oceFreez| 1 | |SM U1|W/m^2 |heating from freezing of sea-water (allowFreezing=T) 104 |TRELAX | 1 | |SM U1|W/m^2 |surface temperature relaxation, >0 increases theta 105 |SRELAX | 1 | |SM U1|g/m^2/s |surface salinity relaxation, >0 increases salt 106 |surForcT| 1 | |SM U1|W/m^2 |model surface forcing for Temperature, >0 increases theta 107 |surForcS| 1 | |SM U1|g/m^2/s |model surface forcing for Salinity, >0 increases salinity 108 |TFLUX | 1 | |SM U1|W/m^2 |total heat flux (match heat-content variations), >0 increases theta 109 |SFLUX | 1 | |SM U1|g/m^2/s |total salt flux (match salt-content variations), >0 increases salt 110 |RCENTER | 50 | |SM MR|m |Cell-Center Height 111 |RSURF | 1 | |SM M1|m |Surface Height 112 |TOTUTEND| 50 | 113 |UUR MR|m/s/day |Tendency of Zonal Component of Velocity 113 |TOTVTEND| 50 | 112 |VVR MR|m/s/day |Tendency of Meridional Component of Velocity 114 |TOTTTEND| 50 | |SMR MR|degC/day |Tendency of Potential Temperature 115 |TOTSTEND| 50 | |SMR MR|psu/day |Tendency of Salinity 116 |MoistCor| 50 | |SM MR|W/m^2 |Heating correction due to moist thermodynamics 117 |gT_Forc | 50 | |SMR MR|degC/s |Potential Temp. forcing tendency 118 |gS_Forc | 50 | |SMR MR|psu/s |Salinity forcing tendency 119 |AB_gT | 50 | |SMR MR|degC/s |Potential Temp. tendency from Adams-Bashforth 120 |AB_gS | 50 | |SMR MR|psu/s |Salinity tendency from Adams-Bashforth 121 |gTinAB | 50 | |SMR MR|degC/s |Potential Temp. tendency going in Adams-Bashforth 122 |gSinAB | 50 | |SMR MR|psu/s |Salinity tendency going in Adams-Bashforth 123 |AB_gU | 50 | 124 |UUR MR|m/s^2 |U momentum tendency from Adams-Bashforth 124 |AB_gV | 50 | 123 |VVR MR|m/s^2 |V momentum tendency from Adams-Bashforth 125 |ADVr_TH | 50 | |WM LR|degC.m^3/s |Vertical Advective Flux of Pot.Temperature 126 |ADVx_TH | 50 | 127 |UU MR|degC.m^3/s |Zonal Advective Flux of Pot.Temperature 127 |ADVy_TH | 50 | 126 |VV MR|degC.m^3/s |Meridional Advective Flux of Pot.Temperature 128 |DFrE_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part) 129 |DFxE_TH | 50 | 130 |UU MR|degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature 130 |DFyE_TH | 50 | 129 |VV MR|degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature 131 |DFrI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part) 132 |DKpI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (KPP Implicit part) 133 |DBgI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (BG Implicit part) 134 |DReI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Redi Implicit part) 135 |ADVr_SLT| 50 | |WM LR|psu.m^3/s |Vertical Advective Flux of Salinity 136 |ADVx_SLT| 50 | 137 |UU MR|psu.m^3/s |Zonal Advective Flux of Salinity 137 |ADVy_SLT| 50 | 136 |VV MR|psu.m^3/s |Meridional Advective Flux of Salinity 138 |DFrE_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part) 139 |DFxE_SLT| 50 | 140 |UU MR|psu.m^3/s |Zonal Diffusive Flux of Salinity 140 |DFyE_SLT| 50 | 139 |VV MR|psu.m^3/s |Meridional Diffusive Flux of Salinity 141 |DFrI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part) 142 |DKpI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (KPP Implicit part) 143 |DBgI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (BG Implicit part) 144 |DReI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Redi Implicit part) 145 |SALTFILL| 50 | |SM MR|psu.m^3/s |Filling of Negative Values of Salinity 146 |VISCAHZ | 50 | |SZ MR|m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt) 147 |VISCA4Z | 50 | |SZ MR|m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt) 148 |VISCAHD | 50 | |SM MR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt) 149 |VISCA4D | 50 | |SM MR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt) 150 |VISCAHW | 50 | |WM LR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (W Pt) 151 |VISCA4W | 50 | |WM LR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (W Pt) 152 |VAHZMAX | 50 | |SZ MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt) 153 |VA4ZMAX | 50 | |SZ MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt) 154 |VAHDMAX | 50 | |SM MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt) 155 |VA4DMAX | 50 | |SM MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt) 156 |VAHZMIN | 50 | |SZ MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt) 157 |VA4ZMIN | 50 | |SZ MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt) 158 |VAHDMIN | 50 | |SM MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt) 159 |VA4DMIN | 50 | |SM MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt) 160 |VAHZLTH | 50 | |SZ MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt) 161 |VA4ZLTH | 50 | |SZ MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt) 162 |VAHDLTH | 50 | |SM MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt) 163 |VA4DLTH | 50 | |SM MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt) 164 |VAHZLTHD| 50 | |SZ MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt) 165 |VA4ZLTHD| 50 | |SZ MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt) 166 |VAHDLTHD| 50 | |SM MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt) 167 |VA4DLTHD| 50 | |SM MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt) 168 |VAHZSMAG| 50 | |SZ MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt) 169 |VA4ZSMAG| 50 | |SZ MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt) 170 |VAHDSMAG| 50 | |SM MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt) 171 |VA4DSMAG| 50 | |SM MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt) 172 |momKE | 50 | |SMR MR|m^2/s^2 |Kinetic Energy (in momentum Eq.) 173 |momHDiv | 50 | |SMR MR|s^-1 |Horizontal Divergence (in momentum Eq.) 174 |momVort3| 50 | |SZR MR|s^-1 |3rd component (vertical) of Vorticity 175 |Strain | 50 | |SZR MR|s^-1 |Horizontal Strain of Horizontal Velocities 176 |Tension | 50 | |SMR MR|s^-1 |Horizontal Tension of Horizontal Velocities 177 |UBotDrag| 50 | 178 |UUR MR|m/s^2 |U momentum tendency from Bottom Drag 178 |VBotDrag| 50 | 177 |VVR MR|m/s^2 |V momentum tendency from Bottom Drag 179 |USidDrag| 50 | 180 |UUR MR|m/s^2 |U momentum tendency from Side Drag 180 |VSidDrag| 50 | 179 |VVR MR|m/s^2 |V momentum tendency from Side Drag 181 |Um_Diss | 50 | 182 |UUR MR|m/s^2 |U momentum tendency from Dissipation 182 |Vm_Diss | 50 | 181 |VVR MR|m/s^2 |V momentum tendency from Dissipation 183 |Um_Advec| 50 | 184 |UUR MR|m/s^2 |U momentum tendency from Advection terms 184 |Vm_Advec| 50 | 183 |VVR MR|m/s^2 |V momentum tendency from Advection terms 185 |Um_Cori | 50 | 186 |UUR MR|m/s^2 |U momentum tendency from Coriolis term 186 |Vm_Cori | 50 | 185 |VVR MR|m/s^2 |V momentum tendency from Coriolis term 187 |Um_dPHdx| 50 | 188 |UUR MR|m/s^2 |U momentum tendency from Hydrostatic Pressure grad 188 |Vm_dPHdy| 50 | 187 |VVR MR|m/s^2 |V momentum tendency from Hydrostatic Pressure grad 189 |Um_Ext | 50 | 190 |UUR MR|m/s^2 |U momentum tendency from external forcing 190 |Vm_Ext | 50 | 189 |VVR MR|m/s^2 |V momentum tendency from external forcing 191 |Um_AdvZ3| 50 | 192 |UUR MR|m/s^2 |U momentum tendency from Vorticity Advection 192 |Vm_AdvZ3| 50 | 191 |VVR MR|m/s^2 |V momentum tendency from Vorticity Advection 193 |Um_AdvRe| 50 | 194 |UUR MR|m/s^2 |U momentum tendency from vertical Advection (Explicit part) 194 |Vm_AdvRe| 50 | 193 |VVR MR|m/s^2 |V momentum tendency from vertical Advection (Explicit part) 195 |VISrI_Um| 50 | |WU LR|m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part) 196 |VISrI_Vm| 50 | |WV LR|m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part) 197 |EXFhs | 1 | |SM U1|W/m^2 |Sensible heat flux into ocean, >0 increases theta 198 |EXFhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta 199 |EXFlwnet| 1 | |SM U1|W/m^2 |Net upward longwave radiation, >0 decreases theta ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 200 |EXFswnet| 1 | |SM U1|W/m^2 |Net upward shortwave radiation, >0 decreases theta 201 |EXFlwdn | 1 | |SM U1|W/m^2 |Downward longwave radiation, >0 increases theta 202 |EXFswdn | 1 | |SM U1|W/m^2 |Downward shortwave radiation, >0 increases theta 203 |EXFqnet | 1 | |SM U1|W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta 204 |EXFtaux | 1 | |UM U1|N/m^2 |zonal surface wind stress, >0 increases uVel 205 |EXFtauy | 1 | |VM U1|N/m^2 |meridional surface wind stress, >0 increases vVel 206 |EXFuwind| 1 | |UM U1|m/s |zonal 10-m wind speed, >0 increases uVel 207 |EXFvwind| 1 | |VM U1|m/s |meridional 10-m wind speed, >0 increases uVel 208 |EXFwspee| 1 | |SM U1|m/s |10-m wind speed modulus ( >= 0 ) 209 |EXFatemp| 1 | |SM U1|degK |surface (2-m) air temperature 210 |EXFaqh | 1 | |SM U1|kg/kg |surface (2-m) specific humidity 211 |EXFevap | 1 | |SM U1|m/s |evaporation, > 0 increases salinity 212 |EXFpreci| 1 | |SM U1|m/s |precipitation, > 0 decreases salinity 213 |EXFsnow | 1 | |SM U1|m/s |snow precipitation, > 0 decreases salinity 214 |EXFempmr| 1 | |SM U1|m/s |net upward freshwater flux, > 0 increases salinity 215 |EXFpress| 1 | |SM U1|N/m^2 |atmospheric pressure field 216 |EXFroff | 1 | |SM U1|m/s |river runoff, > 0 decreases salinity 217 |EXFroft | 1 | |SM U1|deg C |river runoff temperature 218 |KPPviscA| 50 | |SM P LR|m^2/s |KPP vertical eddy viscosity coefficient 219 |KPPdiffS| 50 | |SM P LR|m^2/s |Vertical diffusion coefficient for salt & tracers 220 |KPPdiffT| 50 | |SM P LR|m^2/s |Vertical diffusion coefficient for heat 221 |KPdiffS1| 50 | |SM P LR|m^2/s |KPP boundary layer vert mixed layer diff coef, S 222 |KPdiffT1| 50 | |SM P LR|m^2/s |KPP boundary layer vert mixed layer diff coef, T 223 |KPPghatK| 50 | |SM P LR|0-1 |ratio of KPP non-local (salt) flux relative to surface-flux 224 |KPPhbl | 1 | |SM P 1|m |KPP boundary layer depth, bulk Ri criterion 225 |KPPfrac | 1 | |SM P 1| |Short-wave flux fraction penetrating mixing layer 226 |KPPdbsfc| 50 | |SM P UR|m/s^2 |Buoyancy difference with respect to surface 227 |KPPbfsfc| 50 | |SM P UR|m^2/s^3 |Bo+radiation absorbed to d=hbf*hbl + plume 228 |KPPRi | 50 | |SM P UR|non-dimensional |Bulk Richardson number 229 |KPPbo | 1 | |SM P 1|m^2/s^3 |Surface turbulent buoyancy forcing 230 |KPPbosol| 1 | |SM P 1|m^2/s^3 |surface radiative buoyancy forcing 231 |KPPdbloc| 50 | |SM P UR|m/s^2 |Local delta buoyancy across interfaces 232 |KPPnuddt| 50 | |SM P UR|m^2/s |Vertical double diffusion coefficient for heat 233 |KPPnudds| 50 | |SM P UR|m^2/s |Vertical double diffusion coefficient for salt 234 |KPPg_TH | 50 | |WM LR|degC.m^3/s |max(KPP,bg) non-local Flux of Pot.Temperature 235 |KPg1_TH | 50 | |WM LR|degC.m^3/s |KPP-only non-local Flux of Pot.Temperature 236 |KPPg_SLT| 50 | |WM LR|psu.m^3/s |max(KPP,bg) non-local Flux of Salinity 237 |KPg1_SLT| 50 | |WM LR|psu.m^3/s |KPP-only non-local Flux of Salinity 238 |KPPpfrac| 1 | |SM P 1| |Salt plume flux fraction penetrating mixing layer 239 |KPPboplm| 1 | |SM P 1|m^2/s^3 |Surface haline buoyancy forcing 240 |GM_VisbK| 1 | |SM P M1|m^2/s |Mixing coefficient from Visbeck etal parameterization 241 |GM_hTrsL| 1 | |SM P M1|m |Base depth (>0) of the Transition Layer 242 |GM_baseS| 1 | |SM P M1|1 |Slope at the base of the Transition Layer 243 |GM_rLamb| 1 | |SM P M1|1/m |Slope vertical gradient at Trans. Layer Base (=recip.Lambda) 244 |GM_Kux | 50 | 245 |UU P MR|m^2/s |K_11 element (U.point, X.dir) of GM-Redi tensor 245 |GM_Kvy | 50 | 244 |VV P MR|m^2/s |K_22 element (V.point, Y.dir) of GM-Redi tensor 246 |GM_Kuz | 50 | 247 |UU MR|m^2/s |K_13 element (U.point, Z.dir) of GM-Redi tensor 247 |GM_Kvz | 50 | 246 |VV MR|m^2/s |K_23 element (V.point, Z.dir) of GM-Redi tensor 248 |GM_Kwx | 50 | 249 |UM LR|m^2/s |K_31 element (W.point, X.dir) of GM-Redi tensor 249 |GM_Kwy | 50 | 248 |VM LR|m^2/s |K_32 element (W.point, Y.dir) of GM-Redi tensor 250 |GM_Kwz | 50 | |WM P LR|m^2/s |K_33 element (W.point, Z.dir) of GM-Redi tensor 251 |GM_PsiX | 50 | 252 |UU LR|m^2/s |GM Bolus transport stream-function : U component 252 |GM_PsiY | 50 | 251 |VV LR|m^2/s |GM Bolus transport stream-function : V component 253 |GM_KuzTz| 50 | 254 |UU MR|degC.m^3/s |Redi Off-diagonal Temperature flux: X component 254 |GM_KvzTz| 50 | 253 |VV MR|degC.m^3/s |Redi Off-diagonal Temperature flux: Y component 255 |GM_KwzTz| 50 | |WM LR|degC.m^3/s |Redi main-diagonal vertical Temperature flux 256 |GM_ubT | 50 | 257 |UUr MR|degC.m^3/s |Zonal Mass-Weight Bolus Transp of Pot Temp 257 |GM_vbT | 50 | 256 |VVr MR|degC.m^3/s |Meridional Mass-Weight Bolus Transp of Pot Temp 258 |SIarea | 1 | |SM M1|m^2/m^2 |SEAICE fractional ice-covered area [0 to 1] 259 |SIareaPR| 1 | |SM M1|m^2/m^2 |SIarea preceeding ridging process 260 |SIareaPT| 1 | |SM M1|m^2/m^2 |SIarea preceeding thermodynamic growth/melt 261 |SIheff | 1 | |SM M1|m |SEAICE effective ice thickness 262 |SIheffPT| 1 | |SM M1|m |SIheff preceeeding thermodynamic growth/melt 263 |SIhsnow | 1 | |SM M1|m |SEAICE effective snow thickness 264 |SIhsnoPT| 1 | |SM M1|m |SIhsnow preceeeding thermodynamic growth/melt 265 |SIhsalt | 1 | |SM M1|g/m^2 |SEAICE effective salinity 266 |SItices | 1 | 258 |SM C M1|K |Surface Temperature over Sea-Ice (area weighted) 267 |SIuice | 1 | 268 |UU M1|m/s |SEAICE zonal ice velocity, >0 from West to East 268 |SIvice | 1 | 267 |VV M1|m/s |SEAICE merid. ice velocity, >0 from South to North 269 |SIfu | 1 | 270 |UU U1|N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel 270 |SIfv | 1 | 269 |VV U1|N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel 271 |SIuwind | 1 | 272 |UM U1|m/s |SEAICE zonal 10-m wind speed, >0 increases uVel 272 |SIvwind | 1 | 271 |VM U1|m/s |SEAICE meridional 10-m wind speed, >0 increases uVel 273 |SIqnet | 1 | |SM U1|W/m^2 |Ocean surface heatflux, turb+rad, >0 decreases theta 274 |SIqsw | 1 | |SM U1|W/m^2 |Ocean surface shortwave radiat., >0 decreases theta 275 |SIatmQnt| 1 | |SM U1|W/m^2 |Net atmospheric heat flux, >0 decreases theta 276 |SItflux | 1 | |SM U1|W/m^2 |Same as TFLUX but incl seaice (>0 incr T decr H) 277 |SIaaflux| 1 | |SM U1|W/m^2 |conservative ocn<->seaice adv. heat flux adjust. 278 |SIhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta 279 |SIqneto | 1 | |SM U1|W/m^2 |Open Ocean Part of SIqnet, turb+rad, >0 decr theta 280 |SIqneti | 1 | |SM U1|W/m^2 |Ice Covered Part of SIqnet, turb+rad, >0 decr theta 281 |SIempmr | 1 | |SM U1|kg/m^2/s |Ocean surface freshwater flux, > 0 increases salt 282 |SIatmFW | 1 | |SM U1|kg/m^2/s |Net freshwater flux from atmosphere & land (+=down) 283 |SIsnPrcp| 1 | |SM U1|kg/m^2/s |Snow precip. (+=dw) over Sea-Ice (area weighted) 284 |SIfwSubl| 1 | |SM U1|kg/m^2/s |Potential sublimation freshwater flux, >0 decr. ice 285 |SIacSubl| 1 | |SM U1|kg/m^2/s |Actual sublimation freshwater flux, >0 decr. ice 286 |SIrsSubl| 1 | |SM U1|kg/m^2/s |Residual subl. freshwater flux, >0 taken from ocn 287 |SIactLHF| 1 | |SM U1|W/m^2 |Actual latent heat flux over ice 288 |SImaxLHF| 1 | |SM U1|W/m^2 |Maximum latent heat flux over ice 289 |SIaQbOCN| 1 | |SM M1|m/s |Potential HEFF rate of change by ocean ice flux 290 |SIaQbATC| 1 | |SM M1|m/s |Potential HEFF rate of change by atm flux over ice 291 |SIaQbATO| 1 | |SM M1|m/s |Potential HEFF rate of change by open ocn atm flux 292 |SIdHbOCN| 1 | |SM M1|m/s |HEFF rate of change by ocean ice flux 293 |SIdSbATC| 1 | |SM M1|m/s |HSNOW rate of change by atm flux over sea ice 294 |SIdSbOCN| 1 | |SM M1|m/s |HSNOW rate of change by ocean ice flux 295 |SIdHbATC| 1 | |SM M1|m/s |HEFF rate of change by atm flux over sea ice 296 |SIdHbATO| 1 | |SM M1|m/s |HEFF rate of change by open ocn atm flux 297 |SIdHbFLO| 1 | |SM M1|m/s |HEFF rate of change by flooding snow 298 |SIdAbATO| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by open ocn atm flux 299 |SIdAbATC| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by atm flux over ice ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 300 |SIdAbOCN| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by ocean ice flux 301 |SIdA | 1 | |SM M1|m^2/m^2/s |AREA rate of change (net) 302 |ADVxHEFF| 1 | 303 |UU M1|m.m^2/s |Zonal Advective Flux of eff ice thickn 303 |ADVyHEFF| 1 | 302 |VV M1|m.m^2/s |Meridional Advective Flux of eff ice thickn 304 |SIuheff | 1 | 305 |UU M1|m^2/s |Zonal Transport of eff ice thickn (centered) 305 |SIvheff | 1 | 304 |VV M1|m^2/s |Meridional Transport of eff ice thickn (centered) 306 |DFxEHEFF| 1 | 307 |UU M1|m^2/s |Zonal Diffusive Flux of eff ice thickn 307 |DFyEHEFF| 1 | 306 |VV M1|m^2/s |Meridional Diffusive Flux of eff ice thickn 308 |ADVxAREA| 1 | 309 |UU M1|m^2/m^2.m^2/s |Zonal Advective Flux of fract area 309 |ADVyAREA| 1 | 308 |VV M1|m^2/m^2.m^2/s |Meridional Advective Flux of fract area 310 |DFxEAREA| 1 | 311 |UU M1|m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area 311 |DFyEAREA| 1 | 310 |VV M1|m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area 312 |ADVxSNOW| 1 | 313 |UU M1|m.m^2/s |Zonal Advective Flux of eff snow thickn 313 |ADVySNOW| 1 | 312 |VV M1|m.m^2/s |Meridional Advective Flux of eff snow thickn 314 |DFxESNOW| 1 | 315 |UU M1|m.m^2/s |Zonal Diffusive Flux of eff snow thickn 315 |DFyESNOW| 1 | 314 |VV M1|m.m^2/s |Meridional Diffusive Flux of eff snow thickn 316 |ADVxSSLT| 1 | 317 |UU M1|psu.m^2/s |Zonal Advective Flux of seaice salinity 317 |ADVySSLT| 1 | 316 |VV M1|psu.m^2/s |Meridional Advective Flux of seaice salinity 318 |DFxESSLT| 1 | 319 |UU M1|psu.m^2/s |Zonal Diffusive Flux of seaice salinity 319 |DFyESSLT| 1 | 318 |VV M1|psu.m^2/s |Meridional Diffusive Flux of seaice salinity 320 |SIpress | 1 | |SM M1|m^2/s^2 |SEAICE strength (with upper and lower limit) 321 |SIzeta | 1 | |SM M1|m^2/s |SEAICE nonlinear bulk viscosity 322 |SIeta | 1 | |SM M1|m^2/s |SEAICE nonlinear shear viscosity 323 |SIsigI | 1 | |SM M1|no units |SEAICE normalized principle stress, component one 324 |SIsigII | 1 | |SM M1|no units |SEAICE normalized principle stress, component two 325 |SIshear | 1 | |SM M1|s^{-1} |SEAICE shear deformation 326 |SIdelta | 1 | |SM M1|s^{-1} |SEAICE Delta deformation 327 |SItensil| 1 | |SM M1|m^2/s^2 |SEAICE maximal tensile strength 328 |PLUMEKB | 50 | |SM MR| |fractional plume: [0-1] (unitless) 329 |oceSPtnd| 50 | |SM MR|g/m^2/s |salt tendency due to salt plume flux >0 increases salinity 330 |oceSPflx| 1 | |SM U1|g/m^2/s |net surface Salt flux rejected into the ocean during freezing, (+=down), 331 |oceSPDep| 1 | |SM U1|m |Salt plume depth based on density criterion (>0) ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------