
Tutorial on MPI programming
Victor Eijkhout eijkhout@tacc.utexas.edu
TACC HPC Training 2022

Eijkhout: MPI course 1

Materials

Textbooks and repositories:
https://theartofhpc.com

Eijkhout: MPI course 2

https://theartofhpc.com

Justification

The MPI library is the main tool for parallel programming on a large scale.
This course introduces the main concepts through lecturing and exercises.

Eijkhout: MPI course 3

Table of Contents

The SPMD model6

Collectives54

Point-to-point communication122

Derived Datatypes197

Communicator manipulations234

MPI File I/O259

One-sided communication271

Big data communication311

Advanced collectives324

Shared memory343

Process management356

Process topologies364

Tracing, performance, and such389

Eijkhout: MPI course 4

Basics

Eijkhout: MPI course 5

Part I

The SPMD model

Eijkhout: MPI course 6

2. Overview

In this section you will learn how to think about parallelism in MPI.

Commands learned:

MPI_Init, MPI_Finalize,

MPI_Comm_size, MPI_Comm_rank

MPI_Get_processor_name,

Eijkhout: MPI course 7

The MPI worldview: SPMD

Eijkhout: MPI course 8

3. Computers when MPI was designed

One processor and one process per node;
all communication goes through the network.

Eijkhout: MPI course 9

4. Pure MPI

A node has multiple sockets, each with multiple cores.
Pure MPI puts a process on each core: pretend shared memory doesn’t
exist.

Eijkhout: MPI course 10

5. Quad socket node

Eijkhout: MPI course 11

6. Hybrid programming

Hybrid programming puts a process per node or per socket;
further parallelism comes from threading.
Not in this course. . .

Eijkhout: MPI course 12

7. Terminology

‘Processor’ is ambiguous: is that a chip or one independent instruction
processing unit?

Socket: the processor chip

Processor: we don’t use that word

Core: one instruction-stream processing unit

Process: preferred terminology in talking about MPI.

Eijkhout: MPI course 13

8. SPMD

The basic model of MPI is
‘Single Program Multiple Data’:
each process is an instance of the same program.

Symmetry: There is no ‘master process’, all processes are equal, start and
end at the same time.

Communication calls do not see the cluster structure:
data sending/receiving is the same for all neighbors.

Eijkhout: MPI course 14

Practicalities

Eijkhout: MPI course 15

9. Compiling and running

MPI compilers are usually called mpicc, mpif90, mpicxx.

These are not separate compilers, but scripts around the regular C/Fortran
compiler. You can use all the usual flags.

$ mpicc -show

icc -I/intel/include/stuff -L/intel/lib/stuff -Wwarnings # et cetera

Running your program at TACC:

#SBATCH -N 4

#SBATCH -n 200

ibrun yourprog

the number of processes is determined by SLURM. General case of running
code

mpiexec -n 4 hostfile ... yourprogram arguments

mpirun -np 4 hostfile ... yourprogram argumentsEijkhout: MPI course 16

10. Do I need a supercomputer?

With mpiexec and such, you start a bunch of processes that execute
your MPI program.

Does that mean that you need a cluster or a big multicore?

No! You can start a large number of MPI processes, even on your
laptop. The OS will use ‘time slicing’.

Of course it will not be very efficient. . .

Eijkhout: MPI course 17

11. Cluster setup

Typical cluster:

Login nodes, where you ssh into; usually shared with 100 (or so) other
people. You don’t run your parallel program there!

Compute nodes: where your job is run. They are often exclusive to you: no
other users getting in the way of your program.

Hostfile: the description of where your job runs. Usually generated by a job

scheduler.

Eijkhout: MPI course 18

12. Interactive run

Do not run your programs on a login node.

Acquire compute nodes with idev or qsub -I.

Caveat: only small short jobs; nodes may not be available.

Eijkhout: MPI course 19

13. Batch run

Submit batch job with sbatch or qsub

Your job will be executed . . . Real Soon Now.

See userguide for details about queues, sizes, runtimes, . . .

Eijkhout: MPI course 20

14. Lab setup

Open a terminal window on a TACC cluster.

Type idev -N 2 -n 32 -t 4:0:0 which gives you an interactive
session of 2 nodes, 32 cores, for the next 4 hours.

(After this course, for serious work, you would write a batch script.
The idev sessions are strictly limited in time and resources.)

See the handout for reservations, project IDs, and location of training
materials.

Next slide for how to make and run exercises.

Eijkhout: MPI course 21

15. How to make exercises

Directory: exercises-mpi-c or cxx or f or f08 or p or mpl

If a slide has a (exercisename) over it, there will be a template
program exercisename.c (or F90 or py).

Type make exercisename to compile it

Run with ibrun or mpiexec (see above)

Python: setup once per session

module load python3

No compilation needed. Run:

ibrun python3 yourprogram.py

Add an exercise of your own to the makefile: add the name to the
EXERCISES

Eijkhout: MPI course 22

Exercise 1 (hello)

Write a ‘hello world’ program, without any MPI in it, and run it in parallel
with mpiexec or your local equivalent. Explain the output.

(On TACC machines such as stampede, use ibrun, no processor count.)

Eijkhout: MPI course 23

16. In a picture

Eijkhout: MPI course 24

We start learning MPI!

Eijkhout: MPI course 25

17. MPI headers: C

You need an include file:

#include "mpi.h"

This defines all routines and constants.

Eijkhout: MPI course 26

18. MPI headers: Fortran

You need an include file:

use mpi_f08 ! for Fortran2008

use mpi ! for legacy Fortran90

True Fortran bindings as of the 2008 standard. Provided in Intel
compiler:

module load intel/18.0.2

or newer.

mpif.h will be deprecated.

Eijkhout: MPI course 27

19. MPI headers: Python

You need an include file:

from mpi4py import MPI

Eijkhout: MPI course 28

20. C++ bindings

MPI-1 had C++ bindings, by MPI-2 they were deprecated, in MPI-3 they
have been removed.

Easy solution: use the C bindings unaltered.

This is done in the cxx exercise directory.
Ugly: very un-OO.

There are C++ bindings in Boost. No longer developed?

Try MPL: https://github.com/rabauke/mpl

Very modern OO.
Exercises in mpl directory.
Caution: not a full MPI implementation
(I/O and one-sided mostly missing)

Eijkhout: MPI course 29

https://github.com/rabauke/mpl

21. MPI Init / Finalize

Then put these calls around your code:

MPI_Init(&argc,&argv); // zeros allowed

// your code

MPI_Finalize();

Eijkhout: MPI course 30

22. Init Finalize, Fortran

and for Fortran:

call MPI_Init() ! F08 style

! your code

call MPI_Finalize()

call MPI_Init(ierr) ! F90 style

! your code

call MPI_Finalize(ierr)

Eijkhout: MPI course 31

23. About errors

MPI routines return invoke an error handler (slide 263)
return integer error code

In C: function result.

ierr = MPI_Init(0,0);

if (ierr!=MPI_SUCCESS) /* do something */

But really: can often be ignored; is ignored in this course.

MPI_Init(0,0);

In Fortran: as optional (F08 only) parameter.

In Python: throwing exception.

There’s actually not a lot you can do with an error code:
very hard to recover from errors in parallel.
By default code bombs with (hopefully informative) message.

Eijkhout: MPI course 32

Exercise 2 (hello)

Add the commands MPI_Init and MPI_Finalize to your code. Put three
different print statements in your code: one before the init, one between
init and finalize, and one after the finalize. Again explain the output.

Run your program on a large scale, using a batch job. Where does the
output go? Experiment with

MY_MPIRUN_OPTIONS="-prepend-rank" ibrun yourprogram

Eijkhout: MPI course 33

24. Process identification

Every process has a number (with respect to a communicator)

int MPI_Comm_size(MPI_Comm comm, int *nprocs)

int MPI_Comm_rank(MPI_Comm comm, int *procno)

Lowest number is always zero.

This is a logical view of parallelism: mapping to physical processors/cores
is invisible here.

For now, the communicator will be MPI_COMM_WORLD.

MPI_Comm comm = MPI_COMM_WORLD;

Type(MPI_Comm) :: comm = MPI_COMM_WORLD

from mpi4py import MPI

comm = MPI.COMM_WORLD

Eijkhout: MPI course 34

25. Illustration

Eijkhout: MPI course 35

26. About routine signatures: C/C++

Signature:

int MPI_Comm_size(MPI_Comm comm,int *nprocs)

Use:

MPI_Comm comm = MPI_COMM_WORLD;

int nprocs;

int errorcode;

errorcode = MPI_Comm_size(comm,&nprocs);

(but forget about that error code most of the time)

Eijkhout: MPI course 36

27. About routine signatures: Fortran2008

Signature

MPI_Comm_size(comm, size, ierror)

Type(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Use:

Type(MPI_Comm) :: comm = MPI_COMM_WORLD

integer :: size

CALL MPI_Comm_size(comm, size) ! F2008 style

final parameter optional.

MPI_... types are Type.

Eijkhout: MPI course 37

28. About routine signatures: Fortran90

Signature

MPI_Comm_size(comm, size, ierror)

Integer, Intent(in) :: comm

Integer, Intent(out) :: ierror

Use:

Integer :: comm = MPI_COMM_WORLD

Integer :: size,ierr

CALL MPI_Comm_size(comm, size, ierr) ! F90 style

Final parameter always error parameter. Do not forget!

MPI_... types are INTEGER.

Eijkhout: MPI course 38

29. About routine signatures: Python

Signature:

object method

MPI.Comm.Send(self, buf, int dest, int tag=0)

class method

MPI.Request.Waitall(type cls, requests, statuses=None)

Use:

from mpi4py import MPI

comm = MPI.COMM_WORLD

comm.Send(sendbuf,dest=other)

MPI.Request.Waitall(requests)

Note: most functions are methods of the MPI.Comm class.
(Sometimes of MPI, sometimes other.)

Eijkhout: MPI course 39

30. In a picture

Four processes on two nodes (idev -N 2 -n 4)

Eijkhout: MPI course 40

31. Processor identification

Processors are organized in ‘communicators’.

For now only the ‘world’ communicator (slide 24)

Each process has a ‘rank’ wrt the communicator.

Eijkhout: MPI course 41

MPI_Comm_size

Name Param name Explanation C type F type inout

MPI_Comm_size (

comm communicator MPI_Comm TYPE(MPI_Comm)

size number of processes in the

group of comm

int* INTEGER

)

Eijkhout: MPI course 42

MPI_Comm_rank

Name Param name Explanation C type F type inout

MPI_Comm_rank (

comm communicator MPI_Comm TYPE(MPI_Comm)

rank rank of the calling process

in group of comm

int* INTEGER

)

Eijkhout: MPI course 43

32. Have you been paying attention?

T/F?

1 In C, the result of MPI_Comm_rank is a number from zero to
number-of-processes-minus-one, inclusive.

2 In Fortran, the result of MPI_Comm_rank is a number from one to
number-of-processes, inclusive.

Eijkhout: MPI course 44

Exercise 3 (commrank)

Write a program where each process prints out a message reporting its
number, and how many processes there are:

Hello from process 2 out of 5!

Write a second version of this program, where each process opens a unique
file and writes to it. On some clusters this may not be advisable if you
have large numbers of processors, since it can overload the file system.

Eijkhout: MPI course 45

Exercise 4 (commrank)

Write a program where only the process with number zero reports on how
many processes there are in total.

Eijkhout: MPI course 46

33. Processor name

Processes (can) run on physically distinct locations.

// procname.c

int name_length = MPI_MAX_PROCESSOR_NAME;

char proc_name[name_length];

MPI_Get_processor_name(proc_name,&name_length);

printf("Process %d/%d is running on node <<%s>>\n",

procid,nprocs,proc_name);

Eijkhout: MPI course 47

MPI_Get_processor_name

Name Param name Explanation C type F type inout

MPI_Get_processor_name (

name A unique specifier for

the actual (as opposed to

virtual) node.

char* CHARACTER

resultlen Length (in printable

characters) of the result

returned in name

int* INTEGER

)

Eijkhout: MPI course 48

Exercise 5

Use the command MPI_Get_processor_name. Confirm that you are able to
run a program that uses two different nodes.

TACC nodes have a hostname cRRR-CNN, where RRR is the rack number,
C is the chassis number in the rack, and NN is the node number within
the chassis. Communication is faster inside a rack than between racks!

Eijkhout: MPI course 49

A practical example

Eijkhout: MPI course 50

34. Functional Parallelism

Parallelism by letting each process do a different thing.

Example: divide up a search space.

Each process knows its rank, so it can find its part of the search space.

Eijkhout: MPI course 51

Exercise 6 (prime)

Is the number N = 2, 000, 000, 111 prime? Let each process test a disjoint
set of integers, and print out any factor they find. You don’t have to test
all integers < N: any factor is at most

√
N ≈ 45, 200.

(Hint: i%0 probably gives a runtime error.)

Can you find more than one solution?

Eijkhout: MPI course 52

Exercise 7

Allocate on each process an array:

int my_ints[10];

and fill it so that process 0 has the integers 0 · · · 9, process 1 has 10 · · · 19,
et cetera.

It may be hard to print the output in a non-messy way.

Eijkhout: MPI course 53

Part II

Collectives

Eijkhout: MPI course 54

35. Overview

In this section you will learn ‘collective’ operations, that combine
information from all processes.

Commands learned:

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter

MPI_All_... variants, MPI_....v variants

MPI_Barrier, MPI_Alltoall, MPI_Scan

Eijkhout: MPI course 55

36. Technically

Routines can be ‘collective on a communicator’:

They involve a communicator;

if one process calls that routine, every process in that communicator
needs to call it

Mostly about combining data, but also opening shared files, declaring
‘windows’ for one-sided communication.

Eijkhout: MPI course 56

Concepts

Eijkhout: MPI course 57

37. Collectives

Gathering and spreading information:

Every process has data, you want to bring it together;

One process has data, you want to spread it around.

Root process: the one doing the collecting or disseminating.

Basic cases:

Collect data: gather.

Collect data and compute some overall value (sum, max): reduction.

Send the same data to everyone: broadcast.

Send individual data to each process: scatter.

Eijkhout: MPI course 58

Eijkhout: MPI course 59

Exercise 8

How would you realize the following scenarios with MPI collectives?

1 Let each process compute a random number. You want to print the
maximum of these numbers to your screen.

2 Each process computes a random number again. Now you want to
scale these numbers by their maximum.

3 Let each process compute a random number. You want to print on
what processor the maximum value is computed.

Think about time and space complexity of your suggestions.

Eijkhout: MPI course 60

Basic collectives

Eijkhout: MPI course 61

38. Allreduce: reduce-to-all

MPI_Allreduce does the same as:
MPI_Reduce (reduction) followed by MPI_Bcast (broadcast)

One line less code

Same running time as either, half of reduce-followed-by-broadcast

Expresses the symmetrical nature of the algorithm
(And you don’t have to think about who is the root)

Eijkhout: MPI course 62

39. Motivation for allreduce

Example: normalizing a vector

y ← x/∥x∥

Vectors x,y are distributed: every process has certain elements

The norm calculation is an all-reduce: every process gets same value

Every process scales its part of the vector.

Question: what kind of reduction do you use for an inf-norm?
One-norm? Two-norm?

Eijkhout: MPI course 63

40. Another Allreduce

Standard deviation:

σ =

√√√√ 1

N

N∑
i

(xi − µ) where µ =

∑N
i xi
N

and assume that every processor stores just one xi value.

How do we compute this?

1 The calculation of the average µ is a reduction.

2 Every process needs to compute xi − µ for its value xi , so use
allreduce operation, which does the reduction and leaves the result on
all processors.

3
∑

i (xi − µ) is another sum of distributed data, so we need another
reduction operation. Might as well use allreduce.

Eijkhout: MPI course 64

41. Allreduce syntax

int MPI_Allreduce(

const void* sendbuf,

void* recvbuf, int count, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)

All processes have send and recv buffer

(No root argument)

count is number of items in the buffer: 1 for scalar.
> 1: pointwise application of the operator

MPI_Datatype is MPI_INT, MPI_REAL8 et cetera.

MPI_Op is MPI_SUM, MPI_MAX et cetera.

Eijkhout: MPI course 65

MPI_Allreduce

Name Param name Explanation C type F type inout

MPI_Allreduce (

sendbuf starting address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

recvbuf starting address of receive

buffer

void* TYPE(*),

DIMENSION(..)

OUT

count number of elements in send

buffer

int INTEGER IN

datatype datatype of elements of send

buffer

MPI_Datatype TYPE(MPI_Datatype) IN

op operation MPI_Op TYPE(MPI_Op) IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 66

42. Elementary datatypes

C Fortran meaning

MPI_CHAR MPI_CHARACTER only for text
MPI_SHORT MPI_BYTE 8 bits
MPI_INT MPI_INTEGER like the C/F types
MPI_FLOAT MPI_REAL

MPI_DOUBLE MPI_DOUBLE_PRECISION

MPI_COMPLEX

MPI_LOGICAL

unsigned extensions

MPI_Aint

MPI_Offset

A bunch more.

Eijkhout: MPI course 67

43. MPI operators

MPI_Op description

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical and

MPI_BAND bitwise and

MPI_LOR logical or

MPI_BOR bitwise or

MPI_LXOR logical xor

MPI_BXOR bitwise xor

MPI_MAXLOC location of max

MPI_MINLOC location of min

A couple more.

Eijkhout: MPI course 68

44. Buffers in C

General principle: buffer argument is address in memory of the data.

Buffer is void pointer:

write &x or (void*)&x for scalar

write x or (void*)x for array

Eijkhout: MPI course 69

45. Buffers in Fortran

General principle: buffer argument is address in memory of the data.

Fortran always passes by reference:

write x for scalar

write x for array

Eijkhout: MPI course 70

46. Buffers in C++

Scalars same as in C.

Use of std::vector or std::array:

vector<float> xx(25);

MPI_Send(xx.data(),25,MPI_FLOAT,);

MPI_Send(&xx[0],25,MPI_FLOAT,);

MPI_Send(&xx.front(),25,MPI_FLOAT,);

Can not send from iterator / let recv determine size/capacity.

Eijkhout: MPI course 71

47. Large buffers

As of MPI-4 a buffer can be longer than 231 elements.

Use MPI_Count for count

In C: use MPI_Reduce_c

in Fortran: polymorphism means no change to the call.

MPI_Count buffersize = 1000;

double *indata,*outdata;

indata = (double*) malloc(buffersize*sizeof(double));

outdata = (double*) malloc(buffersize*sizeof(double));

MPI_Allreduce_c(indata,outdata,buffersize,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

Eijkhout: MPI course 72

48. Buffers in Python

For many routines there are two variants:

lowercase: can send Python objects;
output is return result

result = comm.recv(...)

this uses pickle: slow.

uppercase: communicates numpy objects;
input and output are function argument.

result = np.empty(.....)

comm.Recv(result, ...)

basicaly wrapper around C code: fast

Eijkhout: MPI course 73

Exercise 9 (randommax)

Let each process compute a random number, and compute the sum of
these numbers using the MPI_Allreduce routine.

ξ =
∑
i

xi

Each process then scales its value by this sum.

x ′i ← xi/ξ

Compute the sum of the scaled numbers

ξ′ =
∑
i

x ′i

and check that it is 1.

Eijkhout: MPI course 74

49. Inner product calculation

Given vectors x , y :

x ty =
N−1∑
i=0

xiyi

Start out with distributed vectors x , y ,
assume same distribution.

Proposed solution:
MPI_Gather or MPI_Allgather and calculate locally.

Comments?

Eijkhout: MPI course 75

50. Inner product calculation another way

What are (at least two) problems with:

double local_prod[localsize],global_inprod[localsize];

for (i=0; i<localsize; i++)

local_prod[i] = x[i]*y[i];

MPI_Allreduce(&local_prod, &global_inprod,

localsize,MPI_DOUBLE,MPI_SUM,comm)

Eijkhout: MPI course 76

51. Inner product calculation: the right way

Compute local part, then collect local sums.

local_inprod = 0;

for (i=0; i<localsize; i++)

local_inprod += x[i]*y[i];

MPI_Allreduce(&local_inprod, &global_inprod,

1,MPI_DOUBLE,MPI_SUM,comm)

Eijkhout: MPI course 77

52. Reduction to single process

Regular reduce: great for printing out summary information at the end of
your job.

Eijkhout: MPI course 78

53. Reduction to root

int MPI_Reduce

(void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm)

Buffers: sendbuf, recvbuf are ordinary variables/arrays.

Every process has data in its sendbuf,
Root combines it in recvbuf (ignored on non-root processes).

count is number of items in the buffer: 1 for scalar.

MPI_Op is MPI_SUM, MPI_MAX et cetera.

Eijkhout: MPI course 79

54. Broadcast

int MPI_Bcast(

void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

All processes call with the same argument list

root is the rank of the process doing the broadcast

Each process allocates buffer space;
root explicitly fills in values,
all others receive values through broadcast call.

Datatype is MPI_FLOAT, MPI_INT et cetera, different between C/Fortran.

comm is usually MPI_COMM_WORLD

Eijkhout: MPI course 80

55. Gauss-Jordan elimination

https://youtu.be/aQYuwatlWME

Eijkhout: MPI course 81

https://youtu.be/aQYuwatlWME

Exercise 10 (jordan)

The Gauss-Jordan algorithm for solving a linear system with a matrix A (or
computing its inverse) runs as follows:

for pivot k = 1, . . . , n

let the vector of scalings ℓ
(k)
i = Aik/Akk

for row r ̸= k
for column c = 1, . . . , n

Arc ← Arc − ℓ
(k)
r Akc

where we ignore the update of the righthand side, or the formation of the inverse.

Let a matrix be distributed with each process storing one column. Implement the

Gauss-Jordan algorithm as a series of broadcasts: in iteration k process k

computes and broadcasts the scaling vector {ℓ(k)i }i . Replicate the right-hand side

on all processors.

Eijkhout: MPI course 82

Exercise (optional) 11

Bonus exercise: can you extend your program to have multiple columns
per processor?

Eijkhout: MPI course 83

Scan

Eijkhout: MPI course 84

56. Scan

Scan or ‘parallel prefix’: reduction with partial results

Useful for indexing operations:

Each process has an array of np elements;

My first element has global number
∑

q<p nq.

Two variants: MPI_Scan inclusive, and MPI_Exscan exclusive.

Eijkhout: MPI course 85

57. In vs Exclusive

process : 0 1 2 · · · p − 1

data : x0 x1 x2 · · · xp−1

inclusive : x0 x0 ⊕ x1 x0 ⊕ x1 ⊕ x2 · · · ⊕p−1
i=0 xi

exclusive : unchanged x0 x0 ⊕ x1 · · · ⊕p−2
i=0 xi

Eijkhout: MPI course 86

MPI_Scan

Name Param name Explanation C type F type inout

MPI_Scan (

sendbuf starting address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

recvbuf starting address of receive

buffer

void* TYPE(*),

DIMENSION(..)

OUT

count number of elements in input

buffer

int INTEGER IN

datatype datatype of elements of input

buffer

MPI_Datatype TYPE(MPI_Datatype) IN

op operation MPI_Op TYPE(MPI_Op) IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 87

58. For the next exercise

Eijkhout: MPI course 88

Exercise 12 (scangather)

Let each process compute a random value nlocal, and allocate an array
of that length. Define

N =
∑

nlocal

Fill the array with consecutive integers, so that all local arrays, laid
end-to-end, contain the numbers 0 · · ·N − 1. (See figure 58.)

Eijkhout: MPI course 89

Gather/Scatter, Barrier, and others

Eijkhout: MPI course 90

MPI_Gather

Name Param name Explanation C type F type inout

MPI_Gather (

sendbuf starting address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

sendcount number of elements in send

buffer

int INTEGER IN

sendtype datatype of send buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

recvbuf address of receive buffer void* TYPE(*),

DIMENSION(..)

OUT

recvcount number of elements for any

single receive

int INTEGER IN

recvtype datatype of recv buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

root rank of receiving process int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 91

MPI_Scatter

Name Param name Explanation C type F type inout

MPI_Scatter (

sendbuf address of send buffer const void* TYPE(*),

DIMENSION(..)

IN

sendcount number of elements sent to

each process

int INTEGER IN

sendtype datatype of send buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

recvbuf address of receive buffer void* TYPE(*),

DIMENSION(..)

OUT

recvcount number of elements in receive

buffer

int INTEGER IN

recvtype datatype of receive buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

root rank of sending process int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 92

59. Gather/Scatter

Compare buffers to reduce

Scatter: the sendcount / Gather: the recvcount:
this is not, as you might expect, the total length of the buffer;
instead, it is the amount of data to/from each process.

Eijkhout: MPI course 93

60. Gather pictured

Eijkhout: MPI course 94

61. Popular application of gather

Matrix is constructed distributed, but needs to be brougt to one process:

This is not efficient in time or space. Do this only when strictly necessary.
Remember SPMD: try to keep everything symmetrically parallel.

Eijkhout: MPI course 95

MPI_Allgather

Name Param name Explanation C type F type inout

MPI_Allgather (

sendbuf starting address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

sendcount number of elements in send

buffer

int INTEGER IN

sendtype datatype of send buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

recvbuf address of receive buffer void* TYPE(*),

DIMENSION(..)

OUT

recvcount number of elements received

from any process

int INTEGER IN

recvtype datatype of receive buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 96

62. Allgather pictured

Eijkhout: MPI course 97

63. V-type collectives

Gather/scatter but with individual sizes

Requires displacement in the gather/scatter buffer

Eijkhout: MPI course 98

MPI_Gatherv

Name Param name Explanation C type F type inout

MPI_Gatherv (

sendbuf starting address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

sendcount number of elements in send

buffer

int INTEGER IN

sendtype datatype of send buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

recvbuf address of receive buffer void* TYPE(*),

DIMENSION(..)

OUT

recvcounts non-negative integer array

(of length group size)

containing the number of

elements that are received

from each process

const int[] INTEGER(*) IN

displs integer array (of length

group size). Entry i

specifies the displacement

relative to recvbuf at which

to place the incoming data

from process i

const int[] INTEGER(*) IN

recvtype datatype of recv buffer

elements

MPI_Datatype TYPE(MPI_Datatype) IN

root rank of receiving process int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 99

Exercise 13 (scangather)

Take the code from exercise 12 and extend it to gather all local buffers
onto rank zero. Since the local arrays are of differing lengths, this requires
MPI_Gatherv.

How do you construct the lengths and displacements arrays?

Eijkhout: MPI course 100

Review 1

An MPI_Scatter call puts the same data on each process

/poll "A scatter call puts the same data on each process" "T" "F"

Eijkhout: MPI course 101

64. All-to-all

Every process does a scatter;

(equivalently: every process gather)

each individual data, but amounts are identical

Example: data transposition in FFT

Eijkhout: MPI course 102

65. Data transposition

Example: each process knows who to send to,
all-to-all gives information who to receive from

Eijkhout: MPI course 103

66. All-to-allv

Every process does a scatter or gather;

each individual data and individual amounts.

Example: radix sort by least-significant digit.

Eijkhout: MPI course 104

67. Radix sort

Sort 4 numbers on two processes:

proc0 proc1
array 2 5 7 1

binary 010 101 111 001
stage 1

last digit 0 1 1 1
(this serves as bin number)

sorted 010 101 111 001
stage 2

next digit 1 0 1 0
(this serves as bin number)

sorted 101 001 010 111
stage 3

next digit 1 0 0 1
(this serves as bin number)

sorted 001 010 101 111
decimal 1 2 5 7

Eijkhout: MPI course 105

68. Reduce-scatter

Pointwise reduction (one element per process) followed by scatter

Somewhat related to all-to-all: data transpose but reduced
information, rather than gathered.

Applications in both sparse and dense matrix-vector product.

Eijkhout: MPI course 106

69. Example: sparse matrix setup

Example: each process knows who to send to,
all-to-all gives information how many messages to expect
reduce-scatter leaves only relevant information

Eijkhout: MPI course 107

70. Barrier

int MPI_Barrier(MPI_Comm comm)

Synchronize processes:

each process waits at the barrier until all processes have reached the
barrier

This routine is almost never needed:
collectives are already a barrier of sorts, two-sided communication is a
local synchronization

One conceivable use: timing

Eijkhout: MPI course 108

User-defined operators

Eijkhout: MPI course 109

71. MPI Operators

Define your own reduction operator

Define operator between partial result and new operand

typedef void MPI_User_function

(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

Don’t forget to free:

int MPI_Op_free(MPI_Op *op)

Make your own reduction scheme MPI_Reduce_local

Eijkhout: MPI course 110

72. User defined operators, Fortran

FUNCTION user_function(invec(*), inoutvec(*), length, mpitype)

<fortrantype> :: invec(length), inoutvec(length)

INTEGER :: length, mpitype

Eijkhout: MPI course 111

MPI_Op_create

Name Param name Explanation C type F type inout

MPI_Op_create (

user_fn user defined function MPI_User_function* PROCEDURE

(MPI_User_function)

IN

commute true if commutative; false

otherwise.

int LOGICAL IN

op operation MPI_Op* TYPE(MPI_Op) OUT

)

Eijkhout: MPI course 112

73. Example

Smallest nonzero:

(int)inout = m;

}

Eijkhout: MPI course 113

Review 2

The ∥ · ∥2 norm (sum of squares) needs a custom operator.

/poll "The sum of squares norm needs a custom operators" "T" "F"

Eijkhout: MPI course 114

Performance of collectives

Eijkhout: MPI course 115

74. Naive realization of collectives

Broadcast:

Single message:

α = message startup ≈ 10−6s, β = time per word ≈ 10−9s

Time for message of n words:

α+ βn

Time for collective? Can you improve on that?

Eijkhout: MPI course 116

75. Better implementation of collective

What is the running time now?

Can you come up with lower bounds on the α, β terms? Are these
achieved here?

How about the case of really long buffers?

Eijkhout: MPI course 117

Review 3

True of false: there are collectives that do not communicate data

/poll "there are collectives that do not communicate data" "T" "F"

Eijkhout: MPI course 118

Reduction operators

Eijkhout: MPI course 119

76. User-defined operators

Given a reduction function:

typedef void user_function

(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

create a new operator:

MPI_Op rwz;

MPI_Op_create(user_function,1,&rwz);

MPI_Allreduce(data+procno,&positive_minimum,1,MPI_INT,rwz,comm);

Eijkhout: MPI course 120

Exercise 14 (onenorm)

Write the reduction function to implement the one-norm of a vector:

∥x∥1 ≡
∑
i

|xi |.

Eijkhout: MPI course 121

Part III

Point-to-point communication

Eijkhout: MPI course 122

77. Overview

This section concerns direct communication between two processes.
Discussion of distributed work, deadlock and other parallel phenomena.

Commands learned:

MPI_Send, MPI_Recv, MPI_Sendrecv, MPI_Isend, MPI_Irecv

MPI_Wait...

Mention of MPI_Test, MPI_Bsend/Ssend/Rsend.

Eijkhout: MPI course 123

Point-to-point communication

Eijkhout: MPI course 124

78. MPI point-to-point mechanism

Two-sided communication

Matched send and receive calls

One process sends to a specific other process

Other process does a specific receive.

Eijkhout: MPI course 125

79. Ping-pong

A sends to B, B sends back to A

What is the code for A? For B?

Eijkhout: MPI course 126

80. Ping-pong in MPI

Remember SPMD:

if (/* I am process A */) {

MPI_Send(/* to: */ B);

MPI_Recv(/* from: */ B ...);

} else if (/* I am process B */) {

MPI_Recv(/* from: */ A ...);

MPI_Send(/* to: */ A);

}

Eijkhout: MPI course 127

MPI_Send

Name Param name Explanation C type F type inout

MPI_Send (

buf initial address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

count number of elements in send

buffer

int INTEGER IN

datatype datatype of each send buffer

element

MPI_Datatype TYPE(MPI_Datatype) IN

dest rank of destination int INTEGER IN

tag message tag int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 128

MPI_Recv

Name Param name Explanation C type F type inout

MPI_Recv (

buf initial address of receive

buffer

void* TYPE(*),

DIMENSION(..)

OUT

count number of elements in receive

buffer

int INTEGER IN

datatype datatype of each receive

buffer element

MPI_Datatype TYPE(MPI_Datatype) IN

source rank of source or

MPI_ANY_SOURCE

int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

status status object MPI_Status* TYPE(MPI_Status) OUT

)

Eijkhout: MPI course 129

81. Status object

Use MPI_STATUS_IGNORE unless . . .

Receive call can have various wildcards:
MPI_ANY_SOURCE, MPI_ANY_TAG

Receive buffer size is actually upper bound, not exact

Use status object to retrieve actual description of the message

int s = status.MPI_SOURCE;

int t = status.MPI_TAG;

MPI_Get_count(status,MPI_FLOAT,&c);

Eijkhout: MPI course 130

Exercise 15 (pingpong)

Implement the ping-pong program. Add a timer using MPI_Wtime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.

Run multiple ping-pongs (say a thousand) and put the timer around
the loop. The first run may take longer; try to discard it.

Run your code with the two communicating processes first on the
same node, then on different nodes. Do you see a difference?

Then modify the program to use longer messages. How does the
timing increase with message size?

For bonus points, can you do a regression to determine α, β?

Eijkhout: MPI course 131

MPI_Wtime

Name Param name Explanation C type F type inout

MPI_Wtime (

)

Eijkhout: MPI course 132

Distributed data

Eijkhout: MPI course 133

82. Distributed data

Distributed array: each process stores disjoint local part

Local numbering 0, . . . , nlocal;
global numbering is ‘in your mind’.

Eijkhout: MPI course 134

83. Local and global indexing

Every local array starts at 0 (Fortran: 1);
you have to translate that yourself to global numbering:

int myfirst =;

for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;

array[ilocal] = f(iglobal);

}

Eijkhout: MPI course 135

Exercise (optional) 16

Implement a (very simple-minded) Fourier transform: if f is a function on
the interval [0, 1], then the n-th Fourier coefficient is

fn=̂

∫ 1

0
f (t)e−2πx dx

which we approximate by

fn=̂
N−1∑
i=0

f (ih)e−inπ/N

Make one distributed array for the e−inh coefficients,

make one distributed array for the f (ih) values

calculate a couple of coefficients

Eijkhout: MPI course 136

84. Load balancing

If the distributed array is not perfectly divisible:

int Nglobal, // is something large

Nlocal = Nglobal/nprocs,

excess = Nglobal%nprocs;

if (procno==nprocs-1)

Nlocal += excess;

This gives a load balancing problem. Better solution?

Eijkhout: MPI course 137

85. (for future reference)

Let
f (i) = ⌊iN/p⌋

and give process i the points f (i) up to f (i + 1).
Result:

⌊N/p⌋ ≤ f (i + 1)− f (i) ≤ ⌈N/p⌉

Eijkhout: MPI course 138

Local information exchange

Eijkhout: MPI course 139

86. Motivation

Partial differential equations:

−∆u = −uxx(x̄)− uyy (x̄) = f (x̄) for x̄ ∈ Ω = [0, 1]2 with u(x̄) = u0 on δΩ.

Simple case:
−uxx = f (x).

Finite difference approximation:

2u(x)− u(x + h)− u(x − h)

h2
= f (x , u(x), u′(x)) + O(h2),

Finite dimensional: ui ≡ u(ih).

Eijkhout: MPI course 140

87. Motivation (continued)

Equations
−ui−1 + 2ui − ui+1 = h2f (xi) 1 < i < n

2u1 − u2 = h2f (x1) + u0

2un − un−1 = h2f (xn) + un+1. 2 −1 ∅
−1 2 −1

∅ . . .
. . .

. . .

u1
u2
...

 =

h2f1 + u0
h2f2
...

 (1)

So we are interested in sparse/banded matrices.

Eijkhout: MPI course 141

88. Matrix vector product

Most common operation: matrix vector product

y ← Ax , A =

 2 −1
−1 2 −1

. . .
. . .

. . .

u1
u2
...

Component operation: yi = 2xi − xi−1 − xi+1

Parallel execution: each process has range of i-coordinates

⇒ segment of vector, block row of matrix

Eijkhout: MPI course 142

89. Partitioned matrix-vector product

We need a point-to-point mechanism:

each process with ones before/after it.

Eijkhout: MPI course 143

90. Operating on distributed data

Array of numbers xi : i = 0, . . . ,N
compute

yi = −xi−1 + 2xi − xi+1 : i = 1, . . . ,N − 1

’owner computes’
This leads to communication:

so we need a point-to-point mechanism.

Eijkhout: MPI course 144

Blocking communication

Eijkhout: MPI course 145

91. Blocking send/recv

MPI_Send and MPI_Recv are blocking operations:

The process waits (‘blocks’) until the operation is concluded.

A send can not complete until the receive executes.

Ideal vs actual send/recv behaviour.

Eijkhout: MPI course 146

92. Deadlock

Exchange between two processes:

other = 1-procno; /* if I am 0, other is 1; and vice versa */

receive(source=other);

send(target=other);

A subtlety.
This code may actually work:

other = 1-procno; /* if I am 0, other is 1; and vice versa */

send(target=other);

receive(source=other);

Small messages get sent even if there is no corresponding receive.
(Often a system parameter)

Eijkhout: MPI course 147

93. Protocol

Communication is a ‘rendez-vous’ or ‘hand-shake’ protocol:

Sender: ‘I have data for you’

Receiver: ‘I have a buffer ready, send it over’

Sender: ‘Ok, here it comes’

Receiver: ‘Got it.’

Small messages bypass this: ‘eager’ send.
Definition of ‘small message’ controlled by environment variables:
I_MPI_EAGER_THRESHOLD MV2_IBA_EAGER_THRESHOLD

Eijkhout: MPI course 148

Exercise 17

(Classroom exercise) Each student holds a piece of paper in the right hand
– keep your left hand behind your back – and we want to execute:

1 Give the paper to your right neighbor;

2 Accept the paper from your left neighbor.

Including boundary conditions for first and last process, that becomes the
following program:

1 If you are not the rightmost student, turn to the right and give the
paper to your right neighbor.

2 If you are not the leftmost student, turn to your left and accept the
paper from your left neighbor.

Eijkhout: MPI course 149

94. TAU trace: serialization

Eijkhout: MPI course 150

95. The problem here. . .

Here you have a case of a program that computes the right output,
just way too slow.

Beware! Blocking sends/receives can be trouble.
(How would you solve this particular case?)

Food for thought: what happens if you flip the send and receive call?

Eijkhout: MPI course 151

Exercise (optional) 18

Implement the above algorithm using MPI_Send and MPI_Recv calls. Run the
code, and use TAU to reproduce the trace output of figure 94. If you don’t
have TAU, can you show this serialization behavior using timings, for
instance running it on an increasing number of processes?

Eijkhout: MPI course 152

Pairwise exchange

Eijkhout: MPI course 153

96. Operating on distributed data

Take another look:

yi = xi−1 + xi + xi+1 : i = 1, . . . ,N − 1

One-dimensional data and linear process numbering;

Operation between neighboring indices: communication between
neighboring processes.

Eijkhout: MPI course 154

97. Two steps

First do all the data movement to the right, later to the left.

Each process does a send and receive

So everyone does the send, then the receive? We just saw the
problem with that.

Better solution coming up!

Eijkhout: MPI course 155

98. Sendrecv

Instead of separate send and receive: use

MPI_Sendrecv

Combined calling sequence of send and receive;
execute such that no deadlock or sequentialization.

Eijkhout: MPI course 156

MPI_Sendrecv

Name Param name Explanation C type F type inout

MPI_Sendrecv (

sendbuf initial address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

sendcount number of elements in send

buffer

int INTEGER IN

sendtype type of elements in send

buffer

MPI_Datatype TYPE(MPI_Datatype) IN

dest rank of destination int INTEGER IN

sendtag send tag int INTEGER IN

recvbuf initial address of receive

buffer

void* TYPE(*),

DIMENSION(..)

OUT

recvcount number of elements in receive

buffer

int INTEGER IN

recvtype type of elements receive

buffer element

MPI_Datatype TYPE(MPI_Datatype) IN

source rank of source or

MPI_ANY_SOURCE

int INTEGER IN

recvtag receive tag or MPI_ANY_TAG int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

status status object MPI_Status* TYPE(MPI_Status) OUT

)

Eijkhout: MPI course 157

99. SPMD picture

What does process p do?

Eijkhout: MPI course 158

100. Sendrecv with incomplete pairs

MPI_Comm_rank(.... &procno);

if (/* I am not the first process */)

predecessor = procno-1;

else

predecessor = MPI_PROC_NULL;

if (/* I am not the last process */)

successor = procno+1;

else

successor = MPI_PROC_NULL;

sendrecv(from=predecessor,to=successor);

(Receive from MPI_PROC_NULL succeeds without altering the receive buffer.)

Eijkhout: MPI course 159

101. A point of programming style

The previous slide had:

a conditional for computing the sender and receiver rank;
a single Sendrecv call.

Also possible:

if (/* i am first */)

Sendrecv(to=right, from=NULL

↪→);

else if (/* i am last */

Sendrecv(to=NULL, from=left

↪→);

else

Sendrecv(to=right, from=left

↪→);

if (/* i am first */)

Send(to=right);

else if (/* i am last */

Recv(from=left);

else

Sendrecv(to=right, from=left

↪→);

But:
Code duplication is error-prone, also
chance of deadlock by missing a case

Eijkhout: MPI course 160

Exercise (optional) 19 (rightsend)

Revisit exercise 17 and solve it using MPI_Sendrecv.

If you have TAU installed, make a trace. Does it look different from the
serialized send/recv code? If you don’t have TAU, run your code with
different numbers of processes and show that the runtime is essentially
constant.

Eijkhout: MPI course 161

Exercise 20 (sendrecv)

Implement the above three-point combination scheme using MPI_Sendrecv;
every processor only has a single number to send to its neighbor.

Eijkhout: MPI course 162

102. Odd-even transposition sort

Odd-even transposition sort on 4 elements.

Eijkhout: MPI course 163

Exercise (optional) 21

A very simple sorting algorithm is swap sort or odd-even transposition sort: pairs of
processors compare data, and if necessary exchange. The elementary step is called a
compare-and-swap: in a pair of processors each sends their data to the other; one keeps
the minimum values, and the other the maximum. For simplicity, in this exercise we give
each processor just a single number.

The transposition sort algorithm is split in even and odd stages, where in the even stage
processors 2i and 2i + 1 compare and swap data, and in the odd stage processors 2i + 1
and 2i + 2 compare and swap. You need to repeat this P/2 times, where P is the
number of processors; see figure 102.

Implement this algorithm using MPI_Sendrecv. (Use MPI_PROC_NULL for the edge cases

if needed.) Use a gather call to print the global state of the distributed array at the

beginning and end of the sorting process.

Eijkhout: MPI course 164

103. Bucket brigade

Sometimes you really want to pass information from one process to the
next: ‘bucket brigade’

Eijkhout: MPI course 165

Exercise 22 (bucketblock)

Take the code of exercise 18 and modify it so that the data from process
zero gets propagated to every process. Specifically, compute all partial
sums

∑p
i=0 i

2: {
x0 = 1 on process zero

xp = xp−1 + (p + 1)2 on process p

Use MPI_Send and MPI_Recv; make sure to get the order right.

Food for thought: all quantities involved here are integers. Is it a good
idea to use the integer datatype here?

Eijkhout: MPI course 166

Irregular exchanges: non-blocking communication

Eijkhout: MPI course 167

104. Sending with irregular connections

Graph operations:

Eijkhout: MPI course 168

Communicating other than in pairs

Eijkhout: MPI course 169

105. PDE, 2D case

A difference stencil applied to a two-dimensional square domain,
distributed over processors. A cross-processor connection is indicated ⇒
complicated to express pairwise

Eijkhout: MPI course 170

106. PDE matrix

A =

4 −1 ∅ −1 ∅
−1 4 −1 −1

. . .
. . .

. . .
. . .

. . .
. . . −1

. . .

∅ −1 4 ∅ −1

−1 ∅ 4 −1 −1
−1 −1 4 −1 −1

↑
. . . ↑ ↑ ↑ ↑

k − n k − 1 k k + 1 −1 k + n
−1 −1 4

. . .
. . .

Eijkhout: MPI course 171

107. Halo region

The halo region of a process, induced by a stencil

Eijkhout: MPI course 172

108. How do you approach this?

It is very hard to figure out a send/receive sequence that does not
deadlock or serialize

Even if you manage that, you may have process idle time.

Instead:

Declare ‘this data needs to be sent’ or ‘these messages are expected’,
and

then wait for them collectively.

Eijkhout: MPI course 173

109. Non-blocking send/recv

MPI_Isend / MPI_Irecv does not send/receive:

They declare a buffer.

The buffer contents are there after a wait call.

In between the MPI_Isend and MPI_Wait the data may not have been
sent.

In between the MPI_Irecv and MPI_Wait the data may not have arrived.

// start non-blocking communication

MPI_Isend(...); MPI_Irecv(...);

// wait for the Isend/Irecv calls to finish in any order

MPI_Wait(...);

Eijkhout: MPI course 174

110. Syntax

Very much like blocking MPI_Send/MPI_Recv:

int MPI_Isend(void *buf,

int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf,

int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Request *request)

Basic wait:

MPI_Wait(MPI_Request*, MPI_Status*);

Most common way of waiting for completion:

int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status array_of_statuses[])

ignore status: MPI_STATUSES_IGNORE

also MPI_Wait, MPI_Waitany, MPI_Waitsome

Eijkhout: MPI course 175

Exercise 23 (isendirecv)

Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi =
(
xi−1 + xi + xi+1

)
/3: i = 1, . . . ,N − 1

on a distributed array. There are two approaches to the first and last
process:

1 you can use MPI_PROC_NULL for the ‘missing’ communications;
2 you can skip these communications altogether, but now you have to

count the requests carefully.

(Can you think of a different way of handling the end points?)

Eijkhout: MPI course 176

111. Comparison

Obvious: blocking vs non-blocking behaviour.

Buffer reuse: when a blocking call returns, the buffer is safe for reuse
or free;

A buffer in a non-blocking call can only be reused/freed after the wait
call.

Eijkhout: MPI course 177

112. Buffer use in blocking/non-blocking case

Blocking:

double *buffer;

// allocate the buffer

for (... p ...) {

buffer = // fill in the data

MPI_Send(buffer, ... /* to: */ p);

Non-blocking:

double **buffers;

// allocate the buffers

for (... p ...) {

buffers[p] = // fill in the data

MPI_Isend(buffers[p], ... /* to: */ p);

MPI_Waitsomething(.....)

Eijkhout: MPI course 178

113. Pitfalls

Strictly one request/wait per isend/irecv:
can not use one request for multiple simultaneous isends

Some people argue:
Wait for the send is not necessary: if you wait for the receive, the
message has arrived safely

This leads to memory leaks! The wait call deallocates the request
object.

Eijkhout: MPI course 179

114. Matrices in parallel

y ← Ax

and A, x , y all distributed:

Eijkhout: MPI course 180

115. Hiding the halo

Interior of a process domain can overlap with halo transfer:

Eijkhout: MPI course 181

116. Latency hiding

Other motivation for non-blocking calls:
overlap of computation and communication, provided hardware support.

Also known as ‘latency hiding’.

Example: three-point combination operation (see above):

1 Start communication for edge points,

2 Do local operations while communication goes on,

3 Wait for edge points from neighbor processes

4 Incorporate incoming data.

Eijkhout: MPI course 182

Exercise 24 (isendirecvarray)

Take your code of exercise 23 and modify it to use latency hiding.
Operations that can be performed without needing data from neighbors
should be performed in between the MPI_Isend / MPI_Irecv calls and the
corresponding MPI_Wait calls.

Write your code so that it can achieve latency hiding.

Eijkhout: MPI course 183

117. Test: non-blocking wait

Post non-blocking receives

test for incoming messages

if nothing comes in, do local work

while (1) {

MPI_Test(/* from: */ MPI_ANY_SOURCE, &flag);

if (flag)

// do something with incoming message

else

// do local work

}

Eijkhout: MPI course 184

118. The Pipeline Pattern

Remember the bucket brigade: data propagating through processes

If you have many buckets being passed: pipeline

This is very parallel: only filling and draining the pipeline is not
completely parallel

Application to long-vector broadcast: pipelining gives overlap

Eijkhout: MPI course 185

Exercise (optional) 25 (bucketpipenonblock)

Implement a pipelined broadcast for long vectors:
use non-blocking communication to send the vector in parts.

Eijkhout: MPI course 186

Exercise 26 (setdiff)

Create two distributed arrays of positive integers. Take the set difference
of the two: the first array needs to be transformed to remove from it those
numbers that are in the second array.

How could you solve this with an MPI_Allgather call? Why is it not a good
idea to do so? Solve this exercise instead with a circular bucket brigade
algorithm.

Eijkhout: MPI course 187

119. The wheel of reinvention

The circular bucket brigade is the idea behind the ‘Horovod’ library, which
is the key to efficient parallel Deep Learning.

Eijkhout: MPI course 188

120. More sends and receive

MPI_Bsend, MPI_Ibsend: buffered send

MPI_Ssend, MPI_Issend: synchronous send

MPI_Rsend, MPI_Irsend: ready send

Persistent communication: repeated instance of same proc/data
description.

MPI-4:

Partitioned sends.

too obscure to go into.

Eijkhout: MPI course 189

Review 4

Does this code deadlock?

for (int p=0; p<nprocs; p++)

if (p!=procid)

MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

for (int p=0; p<nprocs; p++)

if (p!=procid)

MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

/poll "This code deadlocks" "Yes" "No" "Maybe"

Eijkhout: MPI course 190

Review 5

Does this code deadlock?

int ireq = 0;

for (int p=0; p<nprocs; p++)

if (p!=procid)

↪→MPI_Isend(sbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)

if (p!=procid)

MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

/poll "This code deadlocks" "Yes" "No" "Maybe"

Eijkhout: MPI course 191

Review 6

Does this code deadlock?

int ireq = 0;

for (int p=0; p<nprocs; p++)

if (p!=procid)

↪→MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

for (int p=0; p<nprocs; p++)

if (p!=procid)

MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

/poll "This code deadlocks" "Yes" "No" "Maybe"

Eijkhout: MPI course 192

Review 7

Does this code deadlock?

int ireq = 0;

for (int p=0; p<nprocs; p++)

if (p!=procid)

↪→MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)

if (p!=procid)

MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

/poll "This code deadlocks" "Yes" "No" "Maybe"

Eijkhout: MPI course 193

Where to go from here. . .

Derived data types: send strided/irregular/inhomogeneous data

Sub-communicators: work with subsets of MPI_COMM_WORLD

I/O: efficient file operations

One-sided communication: ‘just’ put/get the data somewhere

Process management

Non-blocking collectives

Graph topology and neighborhood collectives

Shared memory

Eijkhout: MPI course 194

Intermediate topics

Eijkhout: MPI course 195

Justification

MPI basic concepts suffice for many applications. The Intermediate Topics
section deals with more complicated data, process groups, file I/O, and
the basics of one-sided communication.

Eijkhout: MPI course 196

Part IV

Derived Datatypes

Eijkhout: MPI course 197

121. Overview

In this section you will learn about derived data types.

Commands learned:

MPI_Type_contiguous/vector/indexed/struct

MPI_Type_create_subarray

MPI_Pack / MPI_Unpack

F90 types

Eijkhout: MPI course 198

Discussion

Eijkhout: MPI course 199

122. Motivation: datatypes in MPI

All examples so far:

contiguous buffer

elements of single type

We need data structures with gaps, or heterogeneous types.

Send real or imaginary parts out of complex array.

Gather/scatter cyclicly.

Send struct or Type data.

MPI allows for recursive construction of data types.

Eijkhout: MPI course 200

123. Datatype topics

Elementary types: built-in.

Derived types: user-defined.

Packed data: not really a datatype.

Eijkhout: MPI course 201

Datatypes

Eijkhout: MPI course 202

124. Elementary datatypes

C/C++ Fortran

MPI_CHAR MPI_CHARACTER

MPI_UNSIGNED_CHAR

MPI_SIGNED_CHAR

MPI_LOGICAL

MPI_SHORT

MPI_UNSIGNED_SHORT

MPI_INT MPI_INTEGER

MPI_UNSIGNED

MPI_LONG

MPI_UNSIGNED_LONG

MPI_FLOAT MPI_REAL

MPI_DOUBLE MPI_DOUBLE_PRECISION

MPI_LONG_DOUBLE

MPI_COMPLEX

MPI_DOUBLE_COMPLEX

Eijkhout: MPI course 203

125. How to use derived types

Create, commit, use, free:

MPI_Datatype newtype;

MPI_Type_xxx(... oldtype ... &newtype);

MPI_Type_commit (&newtype);

// code using the new type

MPI_Type_free (&newtype);

Type(MPI_Datatype) :: newtype ! F2008

Integer :: newtype ! F90

The oldtype can be elementary or derived.
Recursively constructed types.

Eijkhout: MPI course 204

126. Contiguous type

int MPI_Type_contiguous(

int count, MPI_Datatype old_type, MPI_Datatype *new_type_p)

This one is indistinguishable from just sending count instances of the
old_type.

Eijkhout: MPI course 205

127. Example: non-contiguous data

Matrix in column storage:

Columns are contiguous

Rows are not contiguous

Eijkhout: MPI course 206

128. Vector type

int MPI_Type_vector(

int count, int blocklength, int stride,

MPI_Datatype old_type, MPI_Datatype *newtype_p

);

Used to pick a regular subset of elements from an array.

Eijkhout: MPI course 207

129. Different send and receive types

Send and receive type can differ. Example:
Sender type: vector
receiver type: contiguous or elementary

Receiver has no knowledge of the stride of the sender.

Eijkhout: MPI course 208

130. Send vs recv type

// vector.c

source = (double*) malloc(stride*count*sizeof(double));

target = (double*) malloc(count*sizeof(double));

MPI_Datatype newvectortype;

if (procno==sender) {

MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);

MPI_Type_commit(&newvectortype);

MPI_Send(source,1,newvectortype,the_other,0,comm);

MPI_Type_free(&newvectortype);

} else if (procno==receiver) {

MPI_Status recv_status;

int recv_count;

MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,

&recv_status);

MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);

ASSERT(recv_count==count);

}

Eijkhout: MPI course 209

131. Illustration of the next exercise

Sending strided data from process zero to all others

Eijkhout: MPI course 210

Exercise 27 (stridesend)

Let processor 0 have an array x of length 10P, where P is the number of
processors. Elements 0,P, 2P, . . . , 9P should go to processor zero,
1,P + 1, 2P + 1, . . . to processor 1, et cetera.

Code this as a sequence of send/recv calls, using a vector datatype
for the send, and a contiguous buffer for the receive.

For simplicity, skip the send to/from zero. What is the most elegant
solution if you want to include that case?

For testing, define the array as x [i] = i .

Eijkhout: MPI course 211

Exercise 28

Allocate a matrix on processor zero, using Fortran column-major storage.
Using P sendrecv calls, distribute the rows of this matrix among the
processors.

Eijkhout: MPI course 212

132. Indexed type

int MPI_Type_indexed(

int count, int blocklens[], int displacements[],

MPI_Datatype old_type, MPI_Datatype *newtype);

Eijkhout: MPI course 213

133. Hindexed type

Similar to indexed but using byte offsets:
explicit memory address.

Example usage scenario: send linked list.
Use MPI_Get_address

Eijkhout: MPI course 214

134. Heterogeneous: Structure type

int MPI_Type_create_struct(

int count, int blocklengths[], MPI_Aint displacements[],

MPI_Datatype types[], MPI_Datatype *newtype);

This gets very tedious. . .

Eijkhout: MPI course 215

Subarray type

Eijkhout: MPI course 216

135. Submatrix storage

Location of first element

Stride, blocksize

Eijkhout: MPI course 217

136. BLAS/Lapack storage

Three parameter description:

How about as a ‘block within a block’?
Eijkhout: MPI course 218

137. Subarray type

Vector type is convenient for 2D subarrays,

it gets tedious in higher dimensions.

Better solution: MPI_Type_create_subarray

MPI_Type_create_subarray(

ndims, array_of_sizes, array_of_subsizes,

array_of_starts, order, oldtype, newtype)

Subtle: data does not start at the buffer start

Eijkhout: MPI course 219

Exercise 29 (cubegather)

Assume that your number of processors is P = Q3, and that each process
has an array of identical size. Use MPI_Type_create_subarray to gather all
data onto a root process. Use a sequence of send and receive calls;
MPI_Gather does not work here.

If you haven’t started idev with the right number of processes, use

ibrun -np 27 cubegather

Normally you use ibrun without process count argument.

Eijkhout: MPI course 220

138. Fortran ‘kind’ types

Check out MPI_Type_create_f90_integer, MPI_Type_create_f90_real,
MPI_Type_create_f90_complex

Example:

REAL (KIND = SELECTED_REAL_KIND(15 ,300)) , &

DIMENSION(100) :: array

Type(MPI_Datatype) :: realtype

CALL MPI_Type_create_f90_real(15 , 300 , realtype , error)

Eijkhout: MPI course 221

Extent and resizing

Eijkhout: MPI course 222

139. Extent

Extent: ‘size’ of a type,
especially useful for derived types.

Eijkhout: MPI course 223

140. Extent computation

MPI_Aint lb,asize;

MPI_Type_vector(count,bs,stride,MPI_DOUBLE,&newtype);

MPI_Type_commit(&newtype);

MPI_Type_get_extent(newtype,&lb,&asize);

ASSERT(lb==0);

ASSERT(asize==((count-1)*stride+bs)*sizeof(double));

MPI_Type_free(&newtype);

Eijkhout: MPI course 224

141. Extent of subarray type

The ‘subarray’ type:
data does not start at the start of the type.

MPI_Type_get_true_extent returns non-zero lower bound.

Eijkhout: MPI course 225

142. Extent resizing: enlarging

Multiple derived types may not be what you intended
extent resizing makes it artificually larger:

Eijkhout: MPI course 226

143. Naive code

Send:

// vectorpadsend.c

for (int i=0; i<max_elements; i++) sendbuffer[i] = i;

MPI_Type_vector(count,blocklength,stride,MPI_INT,&stridetype);

MPI_Type_commit(&stridetype);

MPI_Send(sendbuffer,ntypes,stridetype, receiver,0, comm);

Recv:

MPI_Recv(recvbuffer,max_elements,MPI_INT, sender,0, comm,&status);

int count; MPI_Get_count(&status,MPI_INT,&count);

printf("Receive %d elements:",count);

for (int i=0; i<count; i++) printf(" %d",recvbuffer[i]);

printf("\n");

giving an output of:

Receive 6 elements: 0 2 4 5 7 9

Eijkhout: MPI course 227

144. Resizing code

MPI_Type_get_extent(stridetype,&l,&e);

printf("Stride type l=%ld e=%ld\n",l,e);

e += (stride-blocklength) * sizeof(int);

MPI_Type_create_resized(stridetype,l,e,&paddedtype);

MPI_Type_get_extent(paddedtype,&l,&e);

printf("Padded type l=%ld e=%ld\n",l,e);

MPI_Type_commit(&paddedtype);

MPI_Send(sendbuffer,ntypes,paddedtype, receiver,0, comm);

giving:

Strided type l=0 e=20

Padded type l=0 e=24

Receive 6 elements: 0 2 4 6 8 10

Eijkhout: MPI course 228

145. Extent resizing: shrinking

Elements are placed at distance equal to extent:

Eijkhout: MPI course 229

Exercise 30 (stridesend)

Rewrite exercise 27 to use a gather, rather than individual messages.

Eijkhout: MPI course 230

Packed data

Eijkhout: MPI course 231

146. Packing into buffer

int MPI_Pack(

void *inbuf, int incount, MPI_Datatype datatype,

void *outbuf, int outcount, int *position,

MPI_Comm comm);

int MPI_Unpack(

void *inbuf, int insize, int *position,

void *outbuf, int outcount, MPI_Datatype datatype,

MPI_Comm comm);

Eijkhout: MPI course 232

147. Example

if (procno==sender) {

position = 0;

MPI_Pack(&nsends,1,MPI_INT,

buffer,buflen,&position,comm);

for (int i=0; i<nsends; i++) {

double value = rand()/(double)RAND_MAX;

printf("[%d] pack %e\n",procno,value);

MPI_Pack(&value,1,MPI_DOUBLE,

buffer,buflen,&position,comm);

}

MPI_Pack(&nsends,1,MPI_INT,

buffer,buflen,&position,comm);

MPI_Send(buffer,position,MPI_PACKED,other,0,comm);

} else if (procno==receiver) {

int irecv_value;

double xrecv_value;

MPI_Recv(buffer,buflen,MPI_PACKED,other,0,

comm,MPI_STATUS_IGNORE);

position = 0;

MPI_Unpack(buffer,buflen,&position,

&nsends,1,MPI_INT,comm);

for (int i=0; i<nsends; i++) {

MPI_Unpack(buffer,buflen,

&position,&xrecv_value,1,MPI_DOUBLE,comm);

printf("[%d] unpack %e\n",procno,xrecv_value);

}

MPI_Unpack(buffer,buflen,&position,

&irecv_value,1,MPI_INT,comm);

ASSERT(irecv_value==nsends);

}

Eijkhout: MPI course 233

Part V

Communicator manipulations

Eijkhout: MPI course 234

148. Overview

In this section you will learn about various subcommunicators.

Commands learned:

MPI_Comm_dup, discussion of library design

MPI_Comm_split

discussion of groups

discussion of inter/intra communicators.

Eijkhout: MPI course 235

149. Sub-computations

Simultaneous groups of processes, doing different tasks, but loosely
interacting:

Simulation pipeline: produce input data, run simulation, post-process.

Climate model: separate groups for air, ocean, land, ice.

Quicksort: split data in two, run quicksort independently on the
halves.

Process grid: do broadcast in each column.

New communicators are formed recursively from MPI_COMM_WORLD.

Eijkhout: MPI course 236

150. Communicator duplication

Simplest new communicator: identical to a previous one.

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

This is useful for library writers:

MPI_Isend(...); MPI_Irecv(...);

// library call

MPI_Waitall(...);

Naively, the library can ‘catch’ the user messages.

With a duplicate communicator there is no confusion:
user and library both have their own ‘context’ for their messages.

Eijkhout: MPI course 237

151. Interleaved library and user code

library my_library(comm);

MPI_Isend(&sdata,1,MPI_INT,other,1,comm,&(request[0]));

my_library.communication_start();

MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));

MPI_Waitall(2,request,status);

my_library.communication_end();

Eijkhout: MPI course 238

152. Library internally has messages

int library::communication_start() {

int sdata=6,rdata;

MPI_Isend(&sdata,1,MPI_INT,other,2,comm,&(request[0]));

MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));

return 0;

}

int library::communication_end() {

MPI_Status status[2];

MPI_Waitall(2,request,status);

return 0;

}

Eijkhout: MPI course 239

153. Wrong way of setting up the library

// commdupwrong.cxx

class library {

private:

MPI_Comm comm;

int procno,nprocs,other;

MPI_Request request[2];

public:

library(MPI_Comm incomm) {

comm = incomm;

MPI_Comm_rank(comm,&procno);

other = 1-procno;

};

int communication_start();

int communication_end();

};

Eijkhout: MPI course 240

154. Right way of setting up the library

// commdupright.cxx

class library {

private:

MPI_Comm comm;

int procno,nprocs,other;

MPI_Request request[2];

public:

library(MPI_Comm incomm) {

MPI_Comm_dup(incomm,&comm);

MPI_Comm_rank(comm,&procno);

other = 1-procno;

};

~library() {

MPI_Comm_free(&comm);

}

int communication_start();

int communication_end();

};

Eijkhout: MPI course 241

155. Disjoint splitting

Split a communicator in multiple disjoint others.

Give each process a ‘color’, group processes by color:

int MPI_Comm_split(MPI_Comm comm, int color, int key,

MPI_Comm *newcomm)

(key determines ordering: use rank unless you want special effects)

Eijkhout: MPI course 242

156. Row/column example

Simulate a processor grid
create subcommunicator per column (or row):

MPI_Comm_rank(MPI_COMM_WORLD, &procno);

proc_i = procno % proc_column_length;

proc_j = procno / proc_column_length;

MPI_Comm column_comm;

MPI_Comm_split(MPI_COMM_WORLD, proc_j, procno, &column_comm);

MPI_Bcast(data, ... column_comm);

Food for thought: there are many columns, but only one column_comm
variable. Why?

Eijkhout: MPI course 243

157. Row and column communicators

Row and column broadcasts in subcommunicators

Eijkhout: MPI course 244

Exercise 31 (procgrid)

Organize your processes in a grid, and make subcommunicators for the rows and
columns. For this compute the row and column number of each process.

In the row and column communicator, compute the rank. For instance, on a 2× 3
processor grid you should find:

Global ranks: Ranks in row: Ranks in colum:

0 1 2 0 1 2 0 0 0

3 4 5 0 1 2 1 1 1

Check that the rank in the row communicator is the column number, and the other way
around.

Run your code on different number of processes, for instance a number of rows and

columns that is a power of 2, or that is a prime number. This is one occasion where you

could use ibrun -np 9; normally you would never put a processor count on ibrun.

Eijkhout: MPI course 245

Exercise 32

Implement a recursive algorithm for matrix transposition:

Swap blocks (1, 2) and (2, 1); then
Divide the processors into four subcommunicators, and apply this
algorithm recursively on each;
If the communicator has only one process, transpose the matrix in
place.

Eijkhout: MPI course 246

158. Splitting by shared memory

MPI_Comm_split_type splits into communicators of same type.

Only supported type: MPI_COMM_TYPE_SHARED splitting by shared
memory.

// commsplittype.c

MPI_Info info;

MPI_Comm_split_type

(MPI_COMM_WORLD,

MPI_COMM_TYPE_SHARED,

procno,info,&sharedcomm);

MPI_Comm_size

(sharedcomm,&new_nprocs);

MPI_Comm_rank

(sharedcomm,&new_procno);

Eijkhout: MPI course 247

159. Inter-communicators

Communicators so far are of intra-communicator type.

Bridge between two communicators: inter-communicator.

Example: communicator with newly spawned processes

Eijkhout: MPI course 248

160. In a picture

Illustration of ranks in an inter-communicator setup

// intercomm.c

MPI_Comm intercomm;

MPI_Intercomm_create

(/* local_comm: */ split_half_comm,

/* local_leader: */ local_leader_in_inter_comm,

/* peer_comm: */ MPI_COMM_WORLD,

/* remote_peer_rank: */ global_rank_of_other_leader,

/* tag: */ inter_tag,

/* newintercomm: */ &intercomm);

Eijkhout: MPI course 249

161. Concepts

Two local communicators

The ‘peer’ communicator that contains them

Leaders in each of them

An inter-communicator over the leaders.

Eijkhout: MPI course 250

162. Routines

MPI_Intercomm_create: create

MPI_Comm_get_parent: the other leader (see process management)

MPI_Comm_remote_size, MPI_Comm_remote_group: query the other
communicator

MPI_Comm_test_inter: is this an inter or intra?

Eijkhout: MPI course 251

163. More

Non-disjoint subcommunicators through process groups.

Process topologies: cartesian and graph.
There will also be a section about this, later.

Eijkhout: MPI course 252

Cartesian topologies

Eijkhout: MPI course 253

164. Cartesian decomposition
Code:

// cartdims.c

int *dimensions = (int*)

↪→malloc(dim*sizeof(int));

for (int idim=0; idim<dim; idim++)

dimensions[idim] = 0;

MPI_Dims_create(nprocs,dim,dimensions);

Output:

mpicc -o cartdims cartdims.o

Cartesian grid size: 3 dim: 1

3

Cartesian grid size: 3 dim: 2

3 x 1

Cartesian grid size: 4 dim: 1

4

Cartesian grid size: 4 dim: 2

2 x 2

Cartesian grid size: 4 dim: 3

2 x 2 x 1

Cartesian grid size: 12 dim: 1

12

Cartesian grid size: 12 dim: 2

4 x 3

Cartesian grid size: 12 dim: 3

3 x 2 x 2

Cartesian grid size: 12 dim: 4

3 x 2 x 2 x 1

Eijkhout: MPI course 254

165. Create/test Cartesian topology

MPI_Comm cart_comm;

int *periods = (int*) malloc(dim*sizeof(int));

for (int id=0; id<dim; id++) periods[id] = 0;

MPI_Cart_create

(comm,dim,dimensions,periods,

0,&cart_comm);

int dim;

MPI_Cartdim_get(cart_comm,&dim);

int *dimensions = (int*) malloc(dim*sizeof(int));

int *periods = (int*) malloc(dim*sizeof(int));

int *coords = (int*) malloc(dim*sizeof(int));

MPI_Cart_get(cart_comm,dim,dimensions,periods,coords);

Eijkhout: MPI course 255

166. Rank translation

// cart.c

MPI_Comm comm2d;

int periodic[ndim]; periodic[0] = periodic[1] = 0;

MPI_Cart_create(comm,ndim,dimensions,periodic,1,&comm2d);

MPI_Cart_coords(comm2d,procno,ndim,coord_2d);

MPI_Cart_rank(comm2d,coord_2d,&rank_2d);

printf("I am %d: (%d,%d); originally %d\n",

rank_2d,coord_2d[0],coord_2d[1],procno);

Eijkhout: MPI course 256

167. Cartesian communication

// cartcoord.c

for (int id=0; id<dim; id++)

periods[id] = id==0 ? 1 : 0;

MPI_Cart_create

(comm,dim,dimensions,periods,

0,&period_comm);

Code:

int pred,succ;

MPI_Cart_shift

(period_comm,/* dim: */ 0,/* up:

↪→*/ 1,

&pred,&succ);

printf("periodic dimension 0:\n src=%d,

↪→tgt=%d\n",

pred,succ);

MPI_Cart_shift

(period_comm,/* dim: */ 1,/* up:

↪→*/ 1,

&pred,&succ);

printf("non-periodic dimension 1:\n

↪→src=%d, tgt=%d\n",

pred,succ);

Output:

Grid of size 6 in 3 dimensions:

3 x 2 x 1

Shifting process 0.

periodic dimension 0:

src=4, tgt=2

non-periodic dimension 1:

src=-1, tgt=1

Eijkhout: MPI course 257

168. Subgrids

Code:

MPI_Cart_sub(

↪→period_comm,remain,&hyperplane);

if (procno==0) {

MPI_Topo_test(hyperplane,&topo_type);

MPI_Cartdim_get(hyperplane,&hyperdim);

printf("hyperplane has dimension %d,

↪→type %d\n",

hyperdim,topo_type);

MPI_Cart_get(

↪→hyperplane,dim,dims,period,coords);

printf(" periodic: ");

for (int id=0; id<2; id++)

printf("%d,",period[id]);

printf("\n");

Output:

hyperplane has dimension 2, type 2

periodic: 1,0,

Eijkhout: MPI course 258

Part VI

MPI File I/O

Eijkhout: MPI course 259

169. Overview

This section discusses parallel I/O. What is the problem with regular I/O
in parallel?

Commands learned:

MPI_File_open/write/close and variants

parallel file pointer routines: MPI_File_set_view/write_at

Eijkhout: MPI course 260

170. The trouble with parallel I/O

Multiple process reads from one file: no problem.

Multiple writes to one file: big problem.

Everyone writes to separate file: stress on the file system, and requires
post-processing.

Eijkhout: MPI course 261

171. MPI I/O

Part of MPI since MPI-2

Joint creation of one file from bunch of processes.

You could also use hdf5, netcdf, silo . . .

Eijkhout: MPI course 262

172. The usual bits

MPI_File mpifile;

MPI_File_open(comm,"blockwrite.dat",

MPI_MODE_CREATE | MPI_MODE_WRONLY,MPI_INFO_NULL,

&mpifile);

if (procno==0) {

MPI_File_write

(mpifile,output_data,nwords,MPI_INT,MPI_STATUS_IGNORE);

}

MPI_File_close(&mpifile);

type(MPI_File) :: mpifile ! F08

integer :: mpifile ! F90

Eijkhout: MPI course 263

173. How do you make it unique for a process?

MPI_File_write_at

(mpifile,offset,output_data,nwords,

MPI_INT,MPI_STATUS_IGNORE);

or

MPI_File_set_view

(mpifile,

offset,datatype,

MPI_INT,"native",MPI_INFO_NULL);

MPI_File_write // no offset, we have a view

(mpifile,output_data,nwords,MPI_INT,MPI_STATUS_IGNORE);

Eijkhout: MPI course 264

174. Write at an offset

Eijkhout: MPI course 265

175. Write to a view

Eijkhout: MPI course 266

176. Write to a view

Eijkhout: MPI course 267

Exercise 33 (blockwrite)

The given code works for one writing process. Compute a unique offset for
each process (in bytes!) so that all the local arrays are placed in the
output file in sequence.

Eijkhout: MPI course 268

Exercise 34 (viewwrite)

Solve the previous exercise by using MPI_File_write (that is, without
offset), but by using MPI_File_set_view to specify the location.

Eijkhout: MPI course 269

Exercise 35 (scatterwrite)

Now write the local arrays cyclically to the file: with 5 processes and
3 elements per process the file should contain

1 4 7 10 13 | 2 5 8 11 14 | 3 6 9 12 15

Do this by defining a vector derived type and setting that as the file view.

Eijkhout: MPI course 270

Part VII

One-sided communication

Eijkhout: MPI course 271

177. Overview

This section concernes one-sided operations, which allows ‘shared memory’
type programming. (Actual shared memory later.)

Commands learned:

MPI_Put, MPI_Get, MPI_Accumulate

Window commands: MPI_Win_create, MPI_Win_allocate

Active target synchronization MPI_Win_fence

MPI_Win_post/wait/start/complete

Passive target synchronization MPI_Win_lock / MPI_Win_lock

Atomic operations: MPI_Fetch_and_op

Eijkhout: MPI course 272

Basic mechanisms

Eijkhout: MPI course 273

178. Motivation

With two-sided messaging, you can not just put data on a different
processor: the other has to expect it and receive it.

Sparse matrix: it is easy to know what you are receiving, not what
you need to send. Usually solved with complicated preprocessing step.

Neuron simulation: spiking neuron propagates information to
neighbors. Uncertain when this happens.

Other irregular data structures: distributed hash tables.

Eijkhout: MPI course 274

179. Dynamic data

x = f();

p = hash(x);

MPI_Send(x, /* to: */ p);

Problem: how does p know to post a receive,
and how does everyone else know not to?

Eijkhout: MPI course 275

180. One-sided concepts

A process has a window that other processes can access.

origin: process doing a one-sided call
target: process being accessed.

One-sided calls: MPI_Put, MPI_Get, MPI_Accumulate.

Various synchronization mechanisms.

Eijkhout: MPI course 276

181. Window creation

MPI_Win_create (void *base, MPI_Aint size,

int disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win)

size: in bytes

disp_unit: sizeof(type)

Also call MPI_Win_free when done. This is important!

Eijkhout: MPI course 277

182. Window allocation

Instead of passing buffer, let MPI allocate with MPI_Win_allocate

and return the buffer pointer:

int MPI_Win_allocate

(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

can use dedicated fast memory.

Eijkhout: MPI course 278

183. Active target synchronization

All processes call MPI_Win_fence. Epoch is between fences:

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

if (procno==producer)

MPI_Put(/* operands */, win);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

Second fence indicates that one-sided communication is concluded:
target knows that data has been put.

Eijkhout: MPI course 279

MPI_Put

Name Param name Explanation C type F type inout

MPI_Put (

MPI_Put_c (

origin_addr initial address of origin

buffer

const void* TYPE(*),

DIMENSION(..)

IN

origin_count number of entries in origin

buffer

[
int

MPI Count
INTEGER IN

origin_datatype datatype of each entry in

origin buffer

MPI_Datatype TYPE(MPI_Datatype) IN

target_rank rank of target int INTEGER IN

target_disp displacement from start of

window to target buffer

MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in target

buffer

[
int

MPI Count
INTEGER IN

target_datatype datatype of each entry in

target buffer

MPI_Datatype TYPE(MPI_Datatype) IN

win window object used for

communication

MPI_Win TYPE(MPI_Win) IN

)

Eijkhout: MPI course 280

184. Location in the window

Location to write:

window base+ target disp× disp unit.

Eijkhout: MPI course 281

Exercise 36 (rightput)

Revisit exercise 17 and solve it using MPI_Put.

Eijkhout: MPI course 282

Exercise 37 (randomput)

Write code where:

process 0 computes a random number r

if r < .5, zero writes in the window on 1;

if r ≥ .5, zero writes in the window on 2.

Eijkhout: MPI course 283

Exercise (optional) 38 (randomput)

Replace MPI_Win_create by MPI_Win_allocate.

Eijkhout: MPI course 284

185. Remaining simple routines: Get, Accumulate

MPI_Get is converse of MPI_Put. Like Recv, but no status argument.

MPI_Accumulate is a Put plus a reduction on the result: multiple
accumulate calls in one epoch well-defined.
Can use any predefined MPI_Op (not user-defined) or MPI_REPLACE.

Eijkhout: MPI course 285

MPI_Get

Name Param name Explanation C type F type inout

MPI_Get (

MPI_Get_c (

origin_addr initial address of origin

buffer

void* TYPE(*),

DIMENSION(..)

OUT

origin_count number of entries in origin

buffer

[
int

MPI Count
INTEGER IN

origin_datatype datatype of each entry in

origin buffer

MPI_Datatype TYPE(MPI_Datatype) IN

target_rank rank of target int INTEGER IN

target_disp displacement from window

start to the beginning of the

target buffer

MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in target

buffer

[
int

MPI Count
INTEGER IN

target_datatype datatype of each entry in

target buffer

MPI_Datatype TYPE(MPI_Datatype) IN

win window object used for

communication

MPI_Win TYPE(MPI_Win) IN

)

Eijkhout: MPI course 286

MPI_Accumulate

Name Param name Explanation C type F type inout

MPI_Accumulate (

MPI_Accumulate_c (

origin_addr initial address of buffer const void* TYPE(*),

DIMENSION(..)

IN

origin_count number of entries in buffer

[
int

MPI Count
INTEGER IN

origin_datatype datatype of each entry MPI_Datatype TYPE(MPI_Datatype) IN

target_rank rank of target int INTEGER IN

target_disp displacement from start of

window to beginning of target

buffer

MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in target

buffer

[
int

MPI Count
INTEGER IN

target_datatype datatype of each entry in

target buffer

MPI_Datatype TYPE(MPI_Datatype) IN

op reduce operation MPI_Op TYPE(MPI_Op) IN

win window object MPI_Win TYPE(MPI_Win) IN

)

Eijkhout: MPI course 287

Ordering and synchronization

Eijkhout: MPI course 288

186. Fence synchronization

Already mentioned active target synchronization:
the target indicates the start/end of an epoch.

Simplest mechanism: MPI_Win_fence, collective.

After the closing fence, buffers have been sent / windows have been
updated.

Eijkhout: MPI course 289

187. Ordering of operations

Ordering is often undefined:

No ordering of Get and Put/Accumulate operations

No ordering of multiple Puts. Use Accumulate.

The following operations are well-defined inside one epoch:

Instead of multiple Put operations, use Accumulate with MPI_REPLACE.

MPI_Get_accumulate with MPI_NO_OP is safe.

Multiple Accumulate operations from one origin are ordered by
default.

Eijkhout: MPI course 290

Exercise (optional) 39 (countdown)

Implement a shared counter:

One process maintains a counter;

Iterate: all others at random moments update this counter.

When the counter is no longer positive, everyone stops iterating.

The problem here is data synchronization: does everyone see the counter
the same way?

Eijkhout: MPI course 291

188. A second active synchronization

Use MPI_Win_post, MPI_Win_wait, MPI_Win_start, MPI_Win_complete calls

More fine-grained than fences.

Eijkhout: MPI course 292

Passive target synchronization

Eijkhout: MPI course 293

189. Passive target synchronization

Lock a window on the target:

MPI_Win_lock

(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock

(int rank, MPI_Win win)

with types: MPI_LOCK_SHARED MPI_LOCK_EXCLUSIVE

Eijkhout: MPI course 294

190. Justification

MPI-1/2 lacked tools for race condition-free one-sided communication.
These have been added in MPI-3.

Eijkhout: MPI course 295

191. Emulating shared memory with one-sided
communication

One process stores a table of work descriptors, and a ‘stack pointer’
stating how many there are.

Each process reads the pointer, reads the corresponding descriptor,
and decrements the pointer; and

A process that has read a descriptor then executes the corresponding
task.

Non-collective behavior: processes only take a descriptor when they
are available.

Eijkhout: MPI course 296

192. In a picture

Eijkhout: MPI course 297

193. Simplified model

One process has a counter, which models the shared memory;

Each process, if available, reads the counter; and

. . . decrements the counter.

No actual work: random decision if process is available.

Eijkhout: MPI course 298

194. Shared memory problems: what is a race condition?

Race condition: outward behavior depends on timing/synchronization of low-level events.
In shared memory associated with shared data.

Example:

Init: I=0
process 1: I=I+2
process 2: I=I+3

scenario 1. scenario 2. scenario 3.
I = 0

read I = 0 read I = 0 read I = 0 read I = 0 read I = 0
local I = 2 local I = 3 local I = 2 local I = 3 local I = 2
write I = 2 write I = 3 write I = 2

write I = 3 write I = 2 read I = 2
local I = 5
write I = 5

I = 3 I = 2 I = 5

(In MPI, the read/write would be MPI_Get / MPI_Put calls)

Eijkhout: MPI course 299

195. Case study in shared memory: 1, wrong

// countdownput.c

MPI_Win_fence(0,the_window);

int counter_value;

MPI_Get(&counter_value,1,MPI_INT,

counter_process,0,1,MPI_INT,

the_window);

MPI_Win_fence(0,the_window);

if (i_am_available) {

int decrement = -1;

counter_value += decrement;

MPI_Put

(&counter_value, 1,MPI_INT,

counter_process,0,1,MPI_INT,

the_window);

}

MPI_Win_fence(0,the_window);

Eijkhout: MPI course 300

196. Discussion

The multiple MPI_Put calls conflict.

Code is correct if in each iteration there is only one writer.

Question: In that case, can we take out the middle fence?

Question: what is wrong with

MPI_Win_fence(0,the_window);

if (i_am_available) {

MPI_Get(&counter_value, ...)

MPI_Win_fence(0,the_window);

MPI_Put(...)

}

MPI_Win_fence(0,the_window);

?

Eijkhout: MPI course 301

197. Case study in shared memory: 2, hm

// countdownacc.c

MPI_Win_fence(0,the_window);

int counter_value;

MPI_Get(&counter_value,1,MPI_INT,

counter_process,0,1,MPI_INT,

the_window);

MPI_Win_fence(0,the_window);

if (i_am_available) {

int decrement = -1;

MPI_Accumulate

(&decrement, 1,MPI_INT,

counter_process,0,1,MPI_INT,

MPI_SUM,

the_window);

}

MPI_Win_fence(0,the_window);

Eijkhout: MPI course 302

198. Discussion: need for atomics

MPI_Accumulate is atomic, so no conflicting writes.

What is the problem?

Answer: Processes are not reading unique counter_value values.

Conclusion: Read and update need to come together:
read unique value and immediately update.

Atomic ‘get-and-set-with-no-one-coming-in-between’:
MPI_Fetch_and_op / MPI_Get_accumulate.
Former is simple version: scalar only.

Eijkhout: MPI course 303

MPI_Fetch_and_op

Name Param name Explanation C type F type inout

MPI_Fetch_and_op (

origin_addr initial address of buffer const void* TYPE(*),

DIMENSION(..)

IN

result_addr initial address of result

buffer

void* TYPE(*),

DIMENSION(..)

OUT

datatype datatype of the entry in

origin, result, and target

buffers

MPI_Datatype TYPE(MPI_Datatype) IN

target_rank rank of target int INTEGER IN

target_disp displacement from start of

window to beginning of target

buffer

MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)

IN

op reduce operation MPI_Op TYPE(MPI_Op) IN

win window object MPI_Win TYPE(MPI_Win) IN

)

Eijkhout: MPI course 304

199. Case study in shared memory: 3, good

MPI_Win_fence(0,the_window);

int

counter_value;

if (i_am_available) {

int

decrement = -1;

total_decrement++;

MPI_Fetch_and_op

(/* operate with data from origin: */ &decrement,

/* retrieve data from target: */ &counter_value,

MPI_INT, counter_process, 0, MPI_SUM,

the_window);

}

MPI_Win_fence(0,the_window);

if (i_am_available) {

my_counter_values[n_my_counter_values++] = counter_value;

}

Eijkhout: MPI course 305

200. Allowable operators. (Hint!)

MPI type meaning applies to

MPI_MAX maximum integer, floating point
MPI_MIN minimum
MPI_SUM sum integer, floating point, complex, multilanguage types
MPI_REPLACE overwrite
MPI_NO_OP no change
MPI_PROD product
MPI_LAND logical and C integer, logical
MPI_LOR logical or
MPI_LXOR logical xor
MPI_BAND bitwise and integer, byte, multilanguage types
MPI_BOR bitwise or
MPI_BXOR bitwise xor
MPI_MAXLOC max value and location MPI_DOUBLE_INT and such
MPI_MINLOC min value and location

No user-defined operators.Eijkhout: MPI course 306

201. Problem

We are using fences, which are collective.
What if a process is still operating on its local work?

Better (but more tricky) solution:
use passive target synchronization and locks.

Eijkhout: MPI course 307

202. Passive target epoch

if (rank == 0) {

MPI_Win_lock (MPI_LOCK_EXCLUSIVE, 1, 0, win);

MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);

MPI_Win_unlock (1, win);

}

No action on the target required!

Eijkhout: MPI course 308

Exercise 40 (lockfetch)

Investigate atomic updates using passive target synchronization. Use
MPI_Win_lock with an exclusive lock, which means that each process only
acquires the lock when it absolutely has to.

All processs but one update a window:

int one=1;

MPI_Fetch_and_op(&one, &readout,

MPI_INT, repo, zero_disp, MPI_SUM,

the_win);

while the remaining process spins until the others have performed
their update.

Use an atomic operation for the latter process to read out the shared value.
Can you replace the exclusive lock with a shared one?

Eijkhout: MPI course 309

Exercise 41 (lockfetchshared)

As exercise 40, but now use a shared lock: all processes acquire the lock
simultaneously and keep it as long as is needed.

The problem here is that coherence between window buffers and local
variables is now not forced by a fence or releasing a lock. Use
MPI_Win_flush_local to force coherence of a window (on another process)
and the local variable from MPI_Fetch_and_op.

Eijkhout: MPI course 310

Part VIII

Big data communication

Eijkhout: MPI course 311

203. Overview

This section discusses big messages.

Commands learned:

MPI_Send_c, MPI_Allreduce_c, MPI_Get_count_c (MPI-4)

MPI_Get_elements_x, MPI_Type_get_extent_x,
MPI_Type_get_true_extent_x (MPI-3)

Eijkhout: MPI course 312

204. The problem with large messages

There is no problem allocating large buffers:

size_t bigsize = 1<<33;

double *buffer =

(double*) malloc(bigsize*sizeof(double));

But you can not tell MPI how big the buffer is:

MPI_Send(buffer,bigsize,MPI_DOUBLE,...) // WRONG

because the size argument has to be int.

Eijkhout: MPI course 313

205. MPI 3 count type

Count type since MPI 3
C:

MPI_Count count;

Fortran:

Integer(kind=MPI_COUNT_KIND) :: count

Big enough for

int;

MPI_Aint, used in one-sided;

MPI_Offset, used in file I/O.

However, this type could not be used in MPI-3 to describe send buffers.

Eijkhout: MPI course 314

206. MPI 4 large count routines

C: routines with _c suffix

MPI_Count count;

MPI_Send_c(buff,count,MPI_INT, ...);

also MPI_Reduce_c, MPI_Get_c, . . . (some 190 routines in all)

Fortran: polymorphism rules

Integer(kind=MPI_COUNT_KIND) :: count

call MPI_Send(buff,count, MPI_INTEGER, ...)

Eijkhout: MPI course 315

207. Big count example

// pingpongbig.c

assert(sizeof(MPI_Count)>4);

for (int power=3; power<=10; power++) {

MPI_Count length=pow(10,power);

buffer = (double*)malloc(length*sizeof(double));

MPI_Ssend_c

(buffer,length,MPI_DOUBLE,

processB,0,comm);

MPI_Recv_c

(buffer,length,MPI_DOUBLE,

processB,0,comm,MPI_STATUS_IGNORE);

Eijkhout: MPI course 316

208. Same in F08

!! pingpongbig.F90

integer :: power,countbytes

Integer(KIND=MPI_COUNT_KIND) :: length

call MPI_Sizeof(length,countbytes,ierr)

if (procno==0) &

print *,"Bytes in count:",countbytes

length = 10**power

allocate(senddata(length),recvdata(length))

call MPI_Send(senddata,length,MPI_DOUBLE_PRECISION, &

processB,0, comm)

call MPI_Recv(recvdata,length,MPI_DOUBLE_PRECISION, &

processB,0, comm,MPI_STATUS_IGNORE)

Eijkhout: MPI course 317

MPI_Send

Name Param name Explanation C type F type inout

MPI_Send (

MPI_Send_c (

buf initial address of send

buffer

const void* TYPE(*),

DIMENSION(..)

IN

count number of elements in send

buffer

[
int

MPI Count
INTEGER IN

datatype datatype of each send buffer

element

MPI_Datatype TYPE(MPI_Datatype) IN

dest rank of destination int INTEGER IN

tag message tag int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

)

Eijkhout: MPI course 318

209. MPI 4 large count querying

C:

MPI_Count count;

MPI_Get_count_c(&status,MPI_INT, &count);

MPI_Get_elements_c(&status,MPI_INT, &count);

Fortran:

Integer(kind=MPI_COUNT_KIND) :: count

call MPI_Get_count(status,MPI_INTEGER,count)

call MPI_Get_elements(status,MPI_INTEGER,count)

Eijkhout: MPI course 319

210. MPI 3 kludge: use semi-large types

Make a derived datatype, and send a couple of those:

MPI_Datatype blocktype;

MPI_Type_contiguous(mediumsize,MPI_FLOAT,&blocktype);

MPI_Type_commit(&blocktype);

if (procno==sender) {

MPI_Send(source,nblocks,blocktype,receiver,0,comm);

You can even receive them:

} else if (procno==receiver) {

MPI_Status recv_status;

MPI_Recv(target,nblocks,blocktype,sender,0,comm,

&recv_status);

Eijkhout: MPI course 320

211. Large int counting

MPI-3 mechanism, deprecated (probably) in MPI-4.1:

By composing types you can make a ‘big type’. Use
MPI_Type_get_extent_x, MPI_Type_get_true_extent_x, MPI_Get_elements_x
to query.

MPI_Count recv_count;

MPI_Get_elements_x(&recv_status,MPI_FLOAT,&recv_count);

Eijkhout: MPI course 321

Advanced (MPI-3/4) topics

Eijkhout: MPI course 322

Justification

Recent additions to the MPI standard allow your code to deal with
unusual scenarios or very large scale runs.

Eijkhout: MPI course 323

Part IX

Advanced collectives

Eijkhout: MPI course 324

212. Non-blocking collectives

Collectives are blocking.
Compare blocking/non-blocking sends:
MPI_Send → MPI_Isend

immediate return of control, produce request object.
Non-blocking collectives:
MPI_Bcast → MPI_Ibcast

Same:

MPI_Isomething(<usual arguments>, MPI_Request *req);

Considerations:
Calls return immediately;
the usual story about buffer reuse
Requires MPI_Wait... for completion.
Multiple collectives can complete in any order

Why?
Use for overlap communication/computation
Imbalance resilience
Allows pipelining

Eijkhout: MPI course 325

MPI_Ibcast

Name Param name Explanation C type F type inout

MPI_Ibcast (

MPI_Ibcast_c (

buffer starting address of buffer void* TYPE(*),

DIMENSION(..)

INOUT

count number of entries in buffer

[
int

MPI Count
INTEGER IN

datatype datatype of buffer MPI_Datatype TYPE(MPI_Datatype) IN

root rank of broadcast root int INTEGER IN

comm communicator MPI_Comm TYPE(MPI_Comm) IN

request communication request MPI_Request* TYPE(MPI_Request) OUT

)

Eijkhout: MPI course 326

213. Overlapping collectives

Independent collective and local operations:

y ← Ax + (x tx)y

MPI_Iallreduce(.... x ..., &request);

// compute the matrix vector product

MPI_Wait(request);

// do the addition

Eijkhout: MPI course 327

214. Simultaneous reductions

Do two reductions (on the same communicator) with different operators
simultaneously:

α← x ty
β ← ∥z∥∞

which translates to:

MPI_Request reqs[2];

MPI_Iallreduce

(&local_xy, &global_xy, 1,MPI_DOUBLE,MPI_SUM,comm,

&(reqs[0]));

MPI_Iallreduce

(&local_xinf,&global_xin,1,MPI_DOUBLE,MPI_MAX,comm,

&(reqs[1]));

MPI_Waitall(2,reqs,MPI_STATUSES_IGNORE);

Eijkhout: MPI course 328

215. Matching collectives

Blocking and non-blocking don’t match: either all processes call the
non-blocking or all call the blocking one. Thus the following code is
incorrect:

if (rank==root)

MPI_Reduce(&x /* ... */ root,comm);

else

MPI_Ireduce(&x /* ... */ root,comm,&req);

This is unlike the point-to-point behavior of non-blocking calls: you can
catch a message with MPI_Irecv that was sent with MPI_Send.

Eijkhout: MPI course 329

216. Transpose as gather/scatter

Every process needs to do a scatter or gather.

Eijkhout: MPI course 330

217. Simultaneous collectives

Transpose matrix by scattering all rows simultaneously.
Each scatter involves all processes, but with a different spanning tree.

MPI_Request scatter_requests[nprocs];

for (int iproc=0; iproc<nprocs; iproc++) {

MPI_Iscatter(regular,1,MPI_DOUBLE,

&(transpose[iproc]),1,MPI_DOUBLE,

iproc,comm,scatter_requests+iproc);

}

MPI_Waitall(nprocs,scatter_requests,MPI_STATUSES_IGNORE);

Eijkhout: MPI course 331

Persistent collectives

Eijkhout: MPI course 332

218. Persistent collectives (MPI-4)

Similar to persistent send/recv:

MPI_Allreduce_init(...., &request);

for (...) {

MPI_Start(request);

MPI_Wait(request);

}

MPI_Request_free(&request);

Available for all collectives and neighborhood collectives.

Eijkhout: MPI course 333

219. Example

// powerpersist1.c

double localnorm,globalnorm=1.;

MPI_Request reduce_request;

MPI_Allreduce_init

(&localnorm,&globalnorm,1,MPI_DOUBLE,MPI_SUM,

comm,MPI_INFO_NULL,&reduce_request);

for (int it=0; ; it++) {

/*

* Matrix vector product

*/

matmult(indata,outdata,buffersize);

// start computing norm of output vector

localnorm = local_l2_norm(outdata,buffersize);

double old_globalnorm = globalnorm;

MPI_Start(&reduce_request);

// end computing norm of output vector

MPI_Wait(&reduce_request,MPI_STATUS_IGNORE);

globalnorm = sqrt(globalnorm);

// now ‘globalnorm’ is the L2 norm of ‘outdata’

scale(outdata,indata,buffersize,1./globalnorm);

}

MPI_Request_free(&reduce_request);

Note also the MPI_Info parameter.

Eijkhout: MPI course 334

220. Persistent vs non-blocking

Both request-based.

Non-blocking is ‘ad hoc’: buffer info not known before the collective
call.

Persistent allows ‘planning ahead’: management of internal buffers
and such.

Eijkhout: MPI course 335

Non-blocking barrier

Eijkhout: MPI course 336

221. Just what is a barrier?

Barrier is not time synchronization but state synchronization.

Test on non-blocking barrier: ‘has everyone reached some state’

Eijkhout: MPI course 337

222. Use case: adaptive refinement

Some processes decide locally to alter their structure

. . . need to communicate that to neighbors

Problem: neighbors don’t know whether to expect update calls, if at
all.

Solution:

send update msgs, if any;
then post barrier.
Everyone probe for updates, test for barrier.

Eijkhout: MPI course 338

223. Use case: distributed termination detection

Distributed termination detection (Matocha and Kamp, 1998):
draw a global conclusion with local operations

Everyone posts the barrier when done;

keeps doing local computation while testing for the barrier to
complete

Eijkhout: MPI course 339

MPI_Ibarrier

Name Param name Explanation C type F type inout

MPI_Ibarrier (

comm communicator MPI_Comm TYPE(MPI_Comm) IN

request communication request MPI_Request* TYPE(MPI_Request) OUT

)

Eijkhout: MPI course 340

224. Step 1

Do sends, post barrier.

// ibarrierprobe.c

if (i_do_send) {

/*

* Pick a random process to send to,

* not yourself.

*/

int receiver = rand()%nprocs;

MPI_Ssend(&data,1,MPI_FLOAT,receiver,0,comm);

}

/*

* Everyone posts the non-blocking barrier

* and gets a request to test/wait for

*/

MPI_Request barrier_request;

MPI_Ibarrier(comm,&barrier_request);

Eijkhout: MPI course 341

225. Step 2

Poll for barrier and messages

for (; ; step++) {

int barrier_done_flag=0;

MPI_Test(&barrier_request,&barrier_done_flag,

MPI_STATUS_IGNORE);

//stop if you’re done!

if (barrier_done_flag) {

break;

} else {

// if you’re not done with the barrier:

int flag; MPI_Status status;

MPI_Iprobe

(MPI_ANY_SOURCE,MPI_ANY_TAG,

comm, &flag, &status);

if (flag) {

// absorb message!

Eijkhout: MPI course 342

Part X

Shared memory

Eijkhout: MPI course 343

226. Shared memory myths

Myth:
MPI processes use network calls, whereas OpenMP threads access
memory directly, therefore OpenMP is more efficient for shared
memory.

Truth:
MPI implementations use copy operations when possible, whereas
OpenMP has thread overhead, and affinity/coherence problems.

Main problem with MPI on shared memory: data duplication.

Eijkhout: MPI course 344

227. MPI shared memory

Shared memory access: two processes can access each other’s
memory through double* (and such) pointers, if they are on the
same shared memory.

Limitation: only window memory.

Non-use case: remote update. This has all the problems of traditional
shared memory (race conditions, consistency).

Good use case: every process needs access to large read-only dataset
Example: ray tracing.

Eijkhout: MPI course 345

228. Shared memory threatments in MPI

MPI uses optimizations for shared memory: copy instead of socket call

One-sided offers ‘fake shared memory’: yes, can access another
process’ data, but only through function calls.

MPI-3 shared memory gives you a pointer to another process’ memory,
if that process is on the same shared memory.

Eijkhout: MPI course 346

229. Shared memory per cluster node

Cluster node has shared memory

Memory is attached to specific socket

beware Non-Uniform Memory Access (NUMA) effects

Eijkhout: MPI course 347

230. Shared memory interface

Here is the high level overview; details next.

Use MPI_Comm_split_type to find processes on the same shared memory

Use MPI_Win_allocate_shared to create a window between processes on
the same shared memory

Use MPI_Win_shared_query to get pointer to another process’ window
data.

You can now use memcpy instead of MPI_Put.

Eijkhout: MPI course 348

231. Discover shared memory

MPI_Comm_split_type splits into communicators of same type.

Use type: MPI_COMM_TYPE_SHARED splitting by shared memory.
(MPI-4: split by other hardware features through
MPI_COMM_TYPE_HW_GUIDED and MPI_Get_hw_resource_types)

Code:

// commsplittype.c

MPI_Info info;

MPI_Comm_split_type

(MPI_COMM_WORLD,

MPI_COMM_TYPE_SHARED,

procno,info,&sharedcomm);

MPI_Comm_size

(sharedcomm,&new_nprocs);

MPI_Comm_rank

(sharedcomm,&new_procno);

Output:

make[3]: ‘commsplittype’ is up to date.

TACC: Starting up job 4356245

TACC: Starting parallel tasks...

There are 10 ranks total

[0] is processor 0 in a shared group of 5, running on c209-010.frontera.tacc.utexas.edu

[5] is processor 0 in a shared group of 5, running on c209-011.frontera.tacc.utexas.edu

TACC: Shutdown complete. Exiting.

Eijkhout: MPI course 349

Exercise 42

Write a program that uses MPI_Comm_split_type to analyze for a run

1 How many nodes there are;

2 How many processes there are on each node.

If you run this program on an unequal distribution, say 10 processes on
3 nodes, what distribution do you find?

Nodes: 3; processes: 10

TACC: Starting up job 4210429

TACC: Starting parallel tasks...

There are 3 nodes

Node sizes: 4 3 3

TACC: Shutdown complete. Exiting.

Eijkhout: MPI course 350

232. Allocate shared window

Use MPI_Win_allocate_shared to create a window that can be shared;

Has to be on a communicator on shared memory

Example: window is one double.

// sharedbulk.c

MPI_Win node_window;

MPI_Aint window_size; double *window_data;

if (onnode_procid==0)

window_size = sizeof(double);

else window_size = 0;

MPI_Win_allocate_shared

(window_size,sizeof(double),MPI_INFO_NULL,

nodecomm,

&window_data,&node_window);

Eijkhout: MPI course 351

233. Get pointer to other windows

Use MPI_Win_shared_query:

MPI_Aint window_size0; int window_unit; double *win0_addr;

MPI_Win_shared_query

(node_window,0,

&window_size0,&window_unit, &win0_addr);

Eijkhout: MPI course 352

MPI_Win_shared_query

Name Param name Explanation C type F type inout

MPI_Win_shared_query (

MPI_Win_shared_query_c (

win shared memory window object MPI_Win TYPE(MPI_Win) IN

rank rank in the group of window

win or MPI_PROC_NULL

int INTEGER IN

size size of the window segment MPI_Aint* INTEGER

(KIND=MPI_ADDRESS_KIND)

OUT

disp_unit local unit size for

displacements, in bytes

[
int∗
MPI Aint∗ INTEGER OUT

baseptr address for load/store access

to window segment

void* TYPE(C_PTR) OUT

)

Eijkhout: MPI course 353

234. Allocated memory

Memory will be allocated contiguously
convenient for address arithmetic,
not for NUMA: set alloc_shared_noncontig true in MPI_Info object.

Example: each window stores one double. Measure distance in bytes:

Strategy: default behavior of shared
window allocation

Distance 1 to zero: 8

Distance 2 to zero: 16

Strategy: allow non-contiguous
shared window allocation

Distance 1 to zero: 4096

Distance 2 to zero: 8192

Question: what is going on here?

Eijkhout: MPI course 354

235. Exciting example: bulk data

Application: ray tracing:
large read-only data strcture describing the scene

traditional MPI would duplicate:
excessive memory demands

Better: allocate shared data on process 0 of the shared communicator

Everyone else points to this object.

Eijkhout: MPI course 355

Part XI

Process management

Eijkhout: MPI course 356

236. Overview

This section discusses processes management; intra communicators.

Commands learned:

MPI_Comm_spawn, MPI_UNIVERSE_SIZE

MPI_Comm_get_parent, MPI_Comm_remote_size

Eijkhout: MPI course 357

237. Process management

PVM was a precursor of MPI: could dynamically create new processes.

It took MPI a while to catch up.

Use MPI_Attr_get to retrieve MPI_UNIVERSE_SIZE attribute indicating
space for creating more processes outside MPI_COMM_WORLD.

New processes have their own MPI_COMM_WORLD.

Communication between the two communicators: ‘inter
communicator’
(the old type is ‘intra communicator’)

Eijkhout: MPI course 358

238. Space for processes

Probably a machine dependent component.

Suggested standard:

mpiexec -n 4 -usize 8 spawn_manager

Intel MPI at TACC:

MY_MPIRUN_OPTIONS="-usize 8" ibrun -np 4 spawn_manager

Discover size of the universe:

MPI_Attr_get(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,

(void*)&universe_sizep, &flag);

Eijkhout: MPI course 359

239. Manager program

int universe_size, *universe_size_attr,uflag;

MPI_Comm_get_attr

(comm_world,MPI_UNIVERSE_SIZE,

&universe_size_attr,&uflag);

if (uflag) {

universe_size = *universe_size_attr;

} else {

printf("This MPI does not support UNIVERSE_SIZE.\nUsing world

↪→size");

universe_size = world_n;

}

int work_n = universe_size - world_n;

if (world_p==0) {

printf("A universe of size %d leaves room for %d workers\n",

universe_size,work_n);

printf(".. spawning from %s\n",procname);

}

Eijkhout: MPI course 360

240. Manager program (cont’d)

const char *workerprogram = "./spawnapp";

MPI_Comm_spawn(workerprogram,MPI_ARGV_NULL,

work_n,MPI_INFO_NULL,

0,comm_world,&comm_inter,NULL);

Eijkhout: MPI course 361

241. Worker program

// spawnworker.c

MPI_Comm_size(MPI_COMM_WORLD,&nworkers);

MPI_Comm_rank(MPI_COMM_WORLD,&workerno);

MPI_Comm_get_parent(&parent);

Eijkhout: MPI course 362

242. Were you spawned?

// spawnapp.c

MPI_Comm comm_parent;

MPI_Comm_get_parent(&comm_parent);

int is_child = (comm_parent!=MPI_COMM_NULL);

if (is_child) {

int nworkers,workerno;

MPI_Comm_size(MPI_COMM_WORLD,&nworkers);

MPI_Comm_rank(MPI_COMM_WORLD,&workerno);

printf("I detect I am worker %d/%d running on %s\n",

workerno,nworkers,procname);

Eijkhout: MPI course 363

Part XII

Process topologies

Eijkhout: MPI course 364

243. Overview

This section discusses topologies:

Cartesian topology

MPI-1 Graph topology

MPI-3 Graph topology

Commands learned:

MPI_Dist_graph_create, MPI_DIST_GRAPH, MPI_Dist_graph_neighbors_count

MPI_Neighbor_allgather and such

Eijkhout: MPI course 365

244. Process topologies

Processes don’t communicate at random

Example: Cartesian grid, each process 4 (or so) neighbors

Express operations in terms of topology

Elegance of expression

MPI can optimize

Eijkhout: MPI course 366

245. Process reordering

Consecutive process numbering often the best:
divide array by chunks

Not optimal for grids or general graphs:

MPI is allowed to renumber ranks

Graph topology gives information from which MPI can deduce
renumbering

Eijkhout: MPI course 367

246. MPI-1 topology

Cartesian topology

Graph topology, globally specified.
Not scalable, do not use!

Eijkhout: MPI course 368

247. MPI-3 topology

Graph topologies locally specified: scalable!
Limit cases: each process specifies its own connectivity one process
specifies whole graph.

Neighborhood collectives:
expression close to the algorithm.

Eijkhout: MPI course 369

Graph topologies

Eijkhout: MPI course 370

248. Example: 5-point stencil

Neighbor exchange, spelled out:

Each process communicates down/right/up/left

Send and receive at the same time.

Can optimally be done in four steps

Eijkhout: MPI course 371

249. Step 1

Eijkhout: MPI course 372

250. Step 2

The middle node is blocked because all its targets are already receiving
or a channel is occupied:
one missed turn

Eijkhout: MPI course 373

251. Neighborhood collective

This is really a ‘local gather’:
each node does a gather from its neighbors in whatever order.
MPI_Neighbor_allgather

Distributed graph topology where each node has four neighbors

Eijkhout: MPI course 374

252. Why neighborhood collectives?

Using MPI_Isend / MPI_Irecv is like spelling out a collective, imposes
order;

Collectives can use pipelining as opposed to sending a whole buffer;

Collectives can use spanning trees as opposed to direct connections.

Eijkhout: MPI course 375

253. Create graph topology

int MPI_Dist_graph_create

(MPI_Comm comm_old, int nsources, const int sources[],

const int degrees[], const int destinations[],

const int weights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)

nsources how many source nodes described? (Usually 1)

sources the processes being described (Usually MPI_Comm_rank value)

degrees how many processes to send to

destinations their ranks

weights: usually set to MPI_UNWEIGHTED.

info: MPI_INFO_NULL will do

reorder: 1 if dynamically reorder processes

Eijkhout: MPI course 376

254. Neighborhood collectives

int MPI_Neighbor_allgather

(const void *sendbuf, int sendcount,MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

Like an ordinary MPI_Allgather, but
the receive buffer has a length enough for degree messages
(instead of comm size).

Eijkhout: MPI course 377

255. Neighbor querying

After MPI_Neighbor_allgather data in the buffer is not in normal rank order.

MPI_Dist_graph_neighbors_count gives actual number of neighbors.
(Why do you need this?)

MPI_Dist_graph_neighbors lists neighbor numbers.

Eijkhout: MPI course 378

MPI_Dist_graph_neighbors_count

Name Param name Explanation C type F type inout

MPI_Dist_graph_neighbors_count (

comm communicator with distributed

graph topology

MPI_Comm TYPE(MPI_Comm) IN

indegree number of edges into this

process

int* INTEGER OUT

outdegree number of edges out of this

process

int* INTEGER OUT

weighted false if MPI_UNWEIGHTED was

supplied during creation,

true otherwise

int* LOGICAL OUT

)

Eijkhout: MPI course 379

MPI_Dist_graph_neighbors

Name Param name Explanation C type F type inout

MPI_Dist_graph_neighbors (

comm communicator with distributed

graph topology

MPI_Comm TYPE(MPI_Comm) IN

maxindegree size of sources and

sourceweights arrays

int INTEGER IN

sources processes for which the

calling process is a

destination

int[] INTEGER(maxindegree) OUT

sourceweights weights of the edges into the

calling process

int[] INTEGER(*) OUT

maxoutdegree size of destinations and

destweights arrays

int INTEGER IN

destinations processes for which the

calling process is a source

int[] INTEGER

(maxoutdegree)

OUT

destweights weights of the edges out of

the calling process

int[] INTEGER(*) OUT

)

Eijkhout: MPI course 380

256. Example: Systolic graph
Code:

// graph.c

for (int i=0; i<=1; i++) {

int neighb_i = proci+i;

if (neighb_i<0 || neighb_i>=idim)

continue;

int j = 1-i;

int neighb_j = procj+j;

if (neighb_j<0 || neighb_j>=jdim)

continue;

destinations[degree++] =

PROC(neighb_i,neighb_j,idim,jdim);

}

MPI_Dist_graph_create

(comm,

/* I specify just one proc: me */ 1,

&procno,°ree,destinations,weights,

MPI_INFO_NULL,0,

&comm2d

);

Eijkhout: MPI course 381

257. Output

Code:

int indegree,outdegree,

weighted;

MPI_Dist_graph_neighbors_count

(comm2d,

&indegree,&outdegree,

&weighted);

int

my_ij[2] = {proci,procj},

other_ij[4][2];

MPI_Neighbor_allgather

(my_ij,2,MPI_INT,

other_ij,2,MPI_INT,

comm2d);

Output:

[0 = (0,0)] has 2 outbound: 1, 2,

0 inbound:

[1 = (0,1)] has 1 outbound: 3,

1 inbound: (0,0)=0

[2 = (1,0)] has 2 outbound: 3, 4,

1 inbound: (0,0)=0

[3 = (1,1)] has 1 outbound: 5,

2 inbound: (0,1)=1 (1,0)=2

[4 = (2,0)] has 1 outbound: 5,

1 inbound: (1,0)=2

[5 = (2,1)] has 0 outbound:

2 inbound: (1,1)=3 (2,0)=4

Note that the neighbors are listed in correct order. This need not be the
case.

Eijkhout: MPI course 382

258. Query

Explicit query of neighbor process ranks.
Code:

int indegree,outdegree,

weighted;

MPI_Dist_graph_neighbors_count

(comm2d,

&indegree,&outdegree,

&weighted);

int

my_ij[2] = {proci,procj},

other_ij[4][2];

MPI_Neighbor_allgather

(my_ij,2,MPI_INT,

other_ij,2,MPI_INT,

comm2d);

Output:

0 inbound:

1 inbound: 0

1 inbound: 0

2 inbound: 1 2

1 inbound: 2

2 inbound: 4 3

Eijkhout: MPI course 383

Exercise 43 (rightgraph)

Earlier rightsend exercise

Revisit exercise 17 and solve it using MPI_Dist_graph_create. Use figure 259
for inspiration.

Use a degree value of 1.

Eijkhout: MPI course 384

259. Inspiring picture for the previous exercise

Solving the right-send exercise with neighborhood collectives

Eijkhout: MPI course 385

260. Hints for the previous exercise

Two approaches:

1 Declare just one source: the previous process. Do this! Or:

2 Declare two sources: the previous and yourself. In that case bear in
mind slide 255.

Eijkhout: MPI course 386

261. More graph collectives

Heterogeneous: MPI_Neighbor_alltoallw.

Non-blocking: MPI_Ineighbor_allgather and such

Persistent: MPI_Neighbor_allgather_init,
MPI_Neighbor_allgatherv_init.

Eijkhout: MPI course 387

Other

Eijkhout: MPI course 388

Part XIII

Tracing, performance, and such

Eijkhout: MPI course 389

262. Overview

We briefly touch on peripheral issues issues to MPI.

Eijkhout: MPI course 390

Errors

Eijkhout: MPI course 391

263. Built-in handlers

Default: global termination.

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_ARE_FATAL);

MPI-4: Only terminate on communicator: MPI_ERRORS_ABORT.

Local handling: MPI_ERRORS_RETURN:

Eijkhout: MPI course 392

264. Handlers on specific classes

Associate error handler with communicator:
MPI_Comm_set_errhandler MPI_Comm_get_errhandler

Other:

MPI_File_set_errhandler, MPI_File_call_errhandler,
MPI-4: MPI_Session_set_errhandler,

MPI_Session_call_errhandler,

MPI_Win_set_errhandler, MPI_Win_call_errhandler.

Eijkhout: MPI course 393

265. Handling errors

char errtxt[MPI_MAX_ERROR_STRING];

int err = status.MPI_ERROR;

int len=MPI_MAX_ERROR_STRING;

MPI_Error_string(err,errtxt,&len);

printf("Waitall error: %d %s\n",err,errtxt);

Eijkhout: MPI course 394

266. Define new errors

int nonzero_code;

MPI_Add_error_code(nonzero_class,&nonzero_code);

MPI_Add_error_string(nonzero_code,"Attempting to send zero buffer");

Eijkhout: MPI course 395

Performance measurement

Eijkhout: MPI course 396

267. Timers

MPI has a wall clock timer: MPI_Wtime which gives the number of seconds
from a certain point in the past.

The timer has a resolution of MPI_Wtick

Timers can be global

int *v,flag;

MPI_Attr_get(comm, MPI_WTIME_IS_GLOBAL, &v, &flag);

if (mytid==0) printf("Time synchronized? %d->%d\n",flag,*v);

but probably aren’t.

Eijkhout: MPI course 397

268. Example

// pingpong.c

if (procno==processA) {

t = MPI_Wtime();

for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Send(send,1,MPI_DOUBLE,

MPI_Recv(recv,1,MPI_DOUBLE,

}

t = MPI_Wtime()-t; t /= NEXPERIMENTS;

Eijkhout: MPI course 398

269. Global timing

Processes don’t start/end simultaneously. What does a timing result mean
overall? Take average or maximum?

Alternative:

MPI_Barrier(comm)

t = MPI_Wtime();

// something happens here

MPI_Barrier(comm)

t = MPI_Wtime()-t;

Eijkhout: MPI course 399

270. Profiling

See other lecture: MPIP, TAU, et cetera.

Eijkhout: MPI course 400

271. Your own profiling interface

Every routine MPI_Something calls a routine PMPI_Something that does the
actual work. You can now write your MPI_... routine which calls
PMPI_..., and inserting your own profiling calls.

Eijkhout: MPI course 401

Programming for performance

Eijkhout: MPI course 402

272. Eager limit

Optimization for small messages: bypass rendez-vous protocol
(slide 93)

Cross-over point: ‘Eager limit’.

Force efficient messages by increasing the eager limit.

Beware: decreasing payoff for large messages, and

Beware: buffers for eager send eat into your available memory.

Eijkhout: MPI course 403

273. Eager limit setting

For Intel MPI: I_MPI_EAGER_THRESHOLD

mvapich2: MV2_IBA_EAGER_THRESHOLD

OpenMPI: OpenMPI the --mca options btl_openib_eager_limit
and btl_openib_rndv_eager_limit.

Eijkhout: MPI course 404

274. Blocking versus non-blocking

Non-blocking sends MPI_Isend / MPI_Irecv can be more efficient than
blocking

Also: allow overlap computation/communication (latency hiding)

However: can usually not be considered a replacement.

Eijkhout: MPI course 405

275. Progress

MPI is not magically active in the background, so latency hiding is not
automatic. Same for passive target synchronization and non-blocking
barrier completion.

Dedicated communications processor or thread.
This is implementation dependent; for instance, Intel MPI:
I_MPI_ASYNC_PROGRESS_... variables.

Force progress by occasional calls to a polling routine such as
MPI_Iprobe.

Eijkhout: MPI course 406

276. Persistent sends

If a communication between the same pair of processes, involving the
same buffer, happens regularly, it is possible to set up a persistent
communication.

MPI_Send_init

MPI_Recv_init

MPI_Start

Eijkhout: MPI course 407

277. Buffering

MPI has internal buffers: copying costs performance

Use your own buffer:

MPI_Buffer_attach

MPI_Bsend

Copying is also a problem for derived datatypes.

Eijkhout: MPI course 408

278. Graph topology and neighborhood collectives

Mapping problem to architecture sometimes not trivial

Load balancers: ParMetis, Zoltan

Graph topologies: MPI_Dist_graph_adjacent:
allowed to reorder ranks for proximity

Neighborhood collectives allow MPI to schedule optimally.

MPI_Neighbor_allgather (and MPI_Neighbor_allgather_v)
MPI_Neighbor_alltoall

Eijkhout: MPI course 409

279. Network issues

Network contention means that

Your messages can collide with other jobs

messages within your job can collide

Eijkhout: MPI course 410

280. Output routing

Eijkhout: MPI course 411

281. Contention

Eijkhout: MPI course 412

282. Offloading and onloading

Network cards can offer assistance

Mellanox: off-loading
limited repertoire of scenarios where it helps

Intel disagrees: on-loading

Either way, investigate the capabilities of your network.

Eijkhout: MPI course 413

	The SPMD model
	The MPI worldview: SPMD
	Practicalities
	We start learning MPI!
	A practical example

	Collectives
	Concepts
	Basic collectives
	Scan
	Gather/Scatter, Barrier, and others
	User-defined operators
	Performance of collectives

	Point-to-point communication
	Point-to-point communication
	Distributed data
	Local information exchange
	Blocking communication
	Pairwise exchange
	Irregular exchanges: non-blocking communication
	Communicating other than in pairs

	Derived Datatypes
	Discussion
	Datatypes
	Subarray type
	Extent and resizing
	Packed data

	Communicator manipulations
	Cartesian topologies

	MPI File I/O
	One-sided communication
	Basic mechanisms
	Ordering and synchronization
	Passive target synchronization

	Big data communication
	Advanced collectives
	Shared memory
	Process management
	Process topologies
	Tracing, performance, and such
	Errors
	Performance measurement
	Programming for performance

