Class relations: has-a

Victor Eijkhout, Susan Lindsey

Fall 2021

last formatted: September 20, 2021
1. Has-a relationship

A class usually contains data members. These can be simple types or other classes. This allows you to make structured code.

class Course {
private:
 Person the_instructor;
 int year;
}
class Person {
 string name;

}

This is called the has-a relation:

Course has-a Person
2. Literal and figurative has-a
A line segment has a starting point and an end point.

A Segment class can store those points:

```cpp
class Segment {
private:
    Point starting_point, ending_point;
public:
    Point get_the_end_point() {
        return ending_point;
    }
}
```

or store one and derive the other:

```cpp
class Segment {
private:
    Point starting_point;
    float length, angle;
public:
    Point get_the_end_point() {
        /* some computation from the starting point */
    }
}
```

Implementation vs API: implementation can be very different from user interface.
3. Constructors in has-a case

class Person {
private:
 string name;
public:
 Person(string name) {
 /* ... */
 };
};

Use as Course("Eijkhout",65);

class Course {
private:
 Person instructor;
 int enrollment;
public:
 Course(string instr,int n) {
 /* ???? */
 };
};
4. Constructors in the has-a case

Possible constructor:

```java
Course( string teachname, int nstudents ) {
    instructor = Person(teachname);
    enrollment = nstudents;
};
```

Preferred:

```java
Course( string teachname, int nstudents ) :
    instructor(Person(teachname)),
    enrollment = nstudents {
};
```
Exercise 1

1. Make a class Rectangle (sides parallel to axes) with a constructor:

 \[\text{Rectangle}(\text{Point botleft}, \text{float width, float height}); \]

 The logical implementation is to store these quantities. Implement methods:

 \[\text{float area(); float rightedge_x(); float toedge_y();} \]

 and write a main program to test these.

2. Add a second constructor

 \[\text{Rectangle}(\text{Point botleft, Point topright}); \]

 Can you figure out how to use member initializer lists for the constructors?
Optional exercise 2

Make a copy of your solution of the previous exercise, and redesign your class so that it stores two `Point` objects. Your main program should not change.
5. Polymorphism in constructors

You have to decide what to store and what to derive, but you can construct two ways:

class Segment {
private:
 // up to you how to implement!
public:
 Segment(Point start, float length, float angle)
 { }
 Segment(Point start, Point end) { ... }

Advantage: with a good API you can change your mind about the implementation without changing the calling code.