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snails (Physa sp.) continued throughout the winter. MacKenzie et al.
(1995) cited an abstract of Hoglund and Thulin who reported no change
in parasitism.

In summary, exposure of a cold-water, benthic, sedentary flatfish to
thermal effluent discharged 5 m above the plume apparently caused no
effect on body condition, organ indices, or hematological or patholog-
ical alterations. However, prevalence, or mean abundance, or both of
some parasites of the fish were affected below the plume, 1 species
increasing and 6 species declining. This observation suggests either
sensitivity to the effluent or interruption of transmission via their inter-
mediate hosts near the thermal plume. These results provide additional
evidence to support the view that some parasites of fish can be useful
as bioindicators of subtle environmental changes.

We are grateful to M. O’Keefe for technical assistance and to S. Wall
for typing the manuscript. The study was supported by a contract and
the Natural Sciences and Engineering Council of Canada.

LITERATURE CITED

ADAMS, S. M. 1990. Status and use of biological indicators for evalu-
ating the effects of stress on fish. In Biological indicators of stress
in fish, S. M. Adams (ed.). American Fisheries Society Symposium
8: 1–8.

AHO, J. M., J. W. CAMP, AND G. W. ESCH. 1982. Long-term studies on
the population biology of Diplostomulun scheuringi in a thermally
altered reservoir. Journal of Parasitology 68: 695–708.

ARTHUR, J. R., D. K. CONE, R. L. CUSACK, D. E. BARKER, AND M. D.
B. BURT. 2004. Two species of Trichodina (Ciliophora: Peritrichi-
da) from cultured flatfishes (Pleuronectiformes) in Atlantic Canada.
Comparative Parasitology 71: 247–250.

BARKER, D. E., D. K. CONE, AND M. D. B. BURT. 2002. Trichodina
murmanica (Ciliophora) and Gyrodactylus pleuronecti parasitising
hatchery-reared winter flounder, Pseudopleuronectes americanus
(Walbaum): Effects on host growth and assessment of parasite in-
teraction. Journal of Fish Diseases 25: 81–89.

BOXRUCKER, J. C. 1979. Effects of a thermal effluent on the incidence
and abundance of the gill and intestinal parasites of the black bull-
head. Parasitology 78: 195–206.

CAMP, J. W., J. M. AHO, AND G. W. ESCH. 1982. A long-term study on
various aspects of the population biology of Ornithodiplostomum
ptychocheilus in a South Carolina cooling reservoir. Journal of Par-
asitology 68: 709–718.

ESCH, G. W., T. C. HAZEN, R. V. DIMOCK, AND J. W. GIBBONS. 1976.
Thermal effluent and the epizootiology of the ciliate Epistylis and
the bacterium Aeromonas in association with centrarchid fish.
Transactions of the American Microscopical Society 95: 687–693.

EURE, H. E., AND G. W. ESCH. 1974. Effects of thermal effluent on the
population dynamics of helminth parasites in large mouth bass. In
Thermal ecology, J. W. Gibbons and R. R. Sharitz (eds.). AEC
Symposium Series (CONF-730505), Oak Ridge Tennessee Tech-
nical Information Center, U.S. Atomic Energy Commission, Oak
Ridge, Tennessee, p. 237–243.

GEORGE-NASCIMENTO, M., R. A. KHAN, F. GARCIAS, V. LOBOS, G.
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Species of Coccidia (Apicomplexa: Eimeriidae) Infecting Pikas From Alaska, U.S.A. and
Northeastern Siberia, Russia
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ABSTRACT: Eighty-eight fecal samples from 2 species of pika, Ocho-
tona collaris and Ochotona hyperborea, collected in Alaska (N # 53)
and Russia (N # 35), respectively, were examined for the presence of
coccidia (Apicomplexa: Eimeriidae). Five oocyst morphotypes were ob-
served. In O. collaris, we found Eimeria calentinei, Eimeria crypto-

barretti, and Eimeria klondikensis, whereas in O. hyperborea, we found
Eimeria banffensis, E. calentinei, E. cryptobarretti, E. klondikensis, and
Isospora marquardti. This study represents new geographic records for
all 5 coccidia and new host records for E. cryptobarretti and I. mar-
quardti. Only minor quantitative differences were seen between the
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sporulated oocysts we studied and those reported in their original de-
scriptions.

Pikas are holarctic lagomorphs composed of the single genus, Och-
otona, with 30 species (Wilson and Reeder, 2005). The majority of
species are found in Asia, mainly in the Tibet (Qinghai-Xizang) Plateau
region, but also in Afghanistan, Burma, China, India, Iran, Japan, Ka-
zakhstan, Korea, Nepal, Pakistan, and Russia, whereas only 2 species
are found in North America (Chapman and Flux, 1990; Yu et al., 2000;
Wilson and Reeder, 2005). Currently, 18 coccidia species (16 Eimeria,
2 Isospora) are described from all Ochotona species. Over 3 summer
field seasons (2000–2002), the collared pika, Ochotona collaris (Nel-
son, 1893), and the northern pika, Ochotona hyperborea (Pallas, 1811),
were collected in Alaska and northeastern Siberia, Russia, respectively,
as part of the Beringia Coevolution Project (Hoberg et al., 2003; Cook
et al., 2005). The present study was conducted to assess the similarity
of coccidia fauna in 2 closely related hosts geographically separated by
the Bering Strait.

Pikas were caught with museum snap traps or shot with firearms.
Fecal specimens were taken from 88 animals from 6 regional field sites:
O. collaris were collected from 2 sites in Alaska (N # 53), whereas O.
hyperborea were collected from 4 sites in northeastern Siberia, Russia
(N # 35). The Alaskan sites were Wrangell-St. Elias National Park and
Yukon-Charley Rivers National Preserve; 4 regions in northeastern Si-
beria were sampled, the Omolon, Anadyr, and Kolyma river basins and
the Providenya Oblast. Symbiotype host specimens (Frey et al., 1992;
Brooks, 1993), in which all oocyst species/forms were seen and iden-
tified here, are maintained in the University of Alaska Museum of the
North (UAM). Feces were preserved in 2.5% (w/v) aqueous K2Cr2O7

solution. Oocysts were isolated, measured, and photographed as de-
scribed by Duszynski and Wilber (1997).

In all, 25% (22/88) of the samples were positive: 12/35 (34%) O.
hyperborea, and 10/53 (19%) O. collaris. Only 4 pikas were host to
multispecies infections of coccidia. Five distinct oocyst morphotypes
were observed and these were consistent with previously recognized
coccidia species from other pikas. Three coccidia species were recov-
ered from O. collaris: Eimeria calentinei, Eimeria cryptobarretti, and
Eimeria klondikensis; 5 were recovered from O. hyperborea: Eimeria
banffensis, E. calentinei, E. cryptobarretti, E. klondikensis, and Isospora
marquardti. The recovery of E. cryptobarretti from O. collaris and O.
hyperborea represents 2 new host records. Previously, E. cryptobarretti
only had been found in Ochotona princeps, the American pika, in Col-
orado (Duszynski and Brunson, 1973). The recovery of I. marquardti
from O. hyperborea also represents a new host record. The recovery of
3 species of coccidia in Alaskan O. collaris represents geographic range
extensions, as does the recovery of 5 species from O. hyperborea in
Siberia. Both hosts were studied by Hobbs and Samuel (1974) from
pikas collected in the Yukon Territory, Canada, (O. collaris) and Japan
(O. hyperborea); in 92 O. collaris they reported E. banffensis, Eimeria
barretti, Eimeria circumborealis, Eimeria princeps, I. marquardti, and
Isospora yukonensis, and in 14 O. hyperborea they recovered E. cir-
cumborealis, E. princepsis, and Eimeria worleyi.

Because there have been so few published reports of coccidia from
these hosts, we include brief mention of qualitative or quantitative (or
both) structures as they differ from the original descriptions, along with
taxonomic summaries of the species recovered.

Eimeria banffensis Lepp, Todd, and Samuel, 1973

Type host: O. princeps (Richardson, 1828), American pika.
Other hosts (this study): O. hyperborea.
Type locality: North America: Canada: Alberta, Banff, Jumping-

pound, and Sibbald creeks.
Geographic distribution: North America: Canada: Alberta, Banff,

Jumpingpound, and Sibbald creeks, 51%N, 115%W; Yukon Territory,
Ogilvie Mountains, 64%N, 138%W; U.S.A.: Colorado, Larimer and Clear
Creek counties; Asia: Japan: Hokkaido, Daisetzusan National Park;
Russia: Siberia, Chukotka, 3 km SSE of confluence of Volchya River
and Liman Sea, 64%48&N, 177%33&E (this study).

Prevalence: 5/92 (5%) O. collaris (type host) in Yukon Territory;
3/14 (21%) O. hyperborea in Japan; 5/35 (14%) O. hyperborea in Rus-
sia (this study); 40/167 (24%) O. princeps in Colorado; 11/145 (8%)
O. princeps in Alberta.

Material deposited: Skull, skeleton, and tissues of a symbiotype host
(this study) are preserved in UAM, as UAM no. 84368 (IF 5252), male,
11 August 2002 (collected by N. E. Dokuchaev, A. A. Tsvetkova).
Photosyntype of sporulated oocysts are in the U.S. National Parasite
Collection (USNPC) as USNPC no. 87390.

Remarks: The morphology of E. banffensis from O. hyperborea in
Russia is similar to the original description provided by Lepp et al.
(1973) for this species collected and described from O. princeps in
Alberta, Canada. Whereas Duszynski and Brunson (1973) described oo-
cysts that were nearly 2 )m smaller in both length and width, the oocyst
sizes of our Russian oocysts did not differ when compared with the
original specimens (30 ( 25 vs. 30 ( 25). Duszynski and Brunson
(1973) and Hobbs and Samuel (1974) failed to detect the *2-)m polar
granule that was observed in both this study and the original study by
Lepp et al. (1973). The recovery of E. banffensis is a new geographic
record for this parasite in Russia.

Eimeria calentinei Duszynski and Brunson, 1973

Type host: O. princeps (Richardson, 1828), American pika.
Other hosts (this study): O. collaris, O. hyperborea.
Type locality: North America: Colorado, Larimer County.
Geographic distribution: North America: Canada: Yukon Territory,

Ogilvie Mountains, 64%N, 138%W, Alberta, 51%N, 115%W; U.S.A.: Col-
orado: Clear Creek and Larimer counties; Alaska: Yukon-Charley Riv-
ers National Preserve, NW of Rocky Slope of Mt. Kathryn, S of Wood-
chopper Creek, 65%12&N, 143%33&W (this study); Asia: Japan: Hokkaido,
Daisetzusan National Park; Russia: Siberia, Magadanskaya Oblast, 40
km W Magadan, 59%41&N, 150%20&E (this study).

Prevalence: 5/53 (9%) O. collaris in Alaska (this study); 8/92 (9%)
O. collaris in Yukon Territory; 2/35 (6%) O. hyperborea in Siberia (this
study); 1/14 (7%) O. hyperborea in Japan; 2/111 (2%) O. princeps in
Alberta; 39/167 (23%) O. princeps (type host) in Colorado.

Material deposited: Skin, skull, skeleton, and tissues of 2 symbiotype
hosts, one for each host species from this study, are preserved in the
UAM: O. collaris, UAM no. 58399 (AF 49330), male, 1 August 2001
(collected by H. Henttonen, J. Niemimaa, K. Gamblin, L. B. Barrelli)
and O. hyperborea, UAM no. 80824 (AF 38535), 4 September 2000
(collected by S. O. MacDonald, N. E. Dokuchaev, K. E. Galbreath).
Photosyntype of a sporulated oocyst in the USNPC as no. 87393.

Remarks: The morphology of sporulated oocysts of E. calentinei
from O. hyperborea in Russia and O. collaris in Alaska is nearly iden-
tical to those described by Duszynski and Brunson (1973) for the same
species collected from O. princeps in Colorado. The recovery of E.
calentinei establishes new geographic records for this parasite in Russia
and Alaska.

Eimeria cryptobarretti Duszynski and Brunson, 1973

Type host: O. princeps (Richardson, 1828), American pika.
Other hosts (this study): O. collaris, O. hyperborea.
Type locality: North America: U.S.A.: Colorado, Larimer and Clear

Creek counties.
Geographic distribution: North America: Colorado: Larimer and

Clear Creek counties; Alaska: Wrangell-St. Elias National Park (this
study), Yukon-Charley Rivers National Preserve, mountainside NW of
Headwater Lake of Crescent Creek, 64%82&N, 143%75&W (this study);
Asia: Russia: Siberia, Magadanskaya Oblast, mouth of Kegali River,
64%26&N, 161%47&E (this study).

Prevalence: 6/53 (11%) O. collaris in Alaska (this study); 5/35 (14%)
O. hyperborea in Siberia (this study); 107/167 (64%) O. princeps (type
host) in Colorado.

Material deposited: Skin, skull, skeleton, and tissues of 2 symbiotype
hosts, one for each host species from this study, are preserved in the
UAM: O. collaris, UAM no. 58213 (AF 49535), 18 July 2001 (collected
by H. Henttonen, J. Niemimaa, K. Gamblin, L. B. Barrelli) and O.
hyperborea, UAM no. 80603 (AF 38233), male, 19 August 2000 (col-
lected by S. O. MacDonald, N. E. Dokuchaev, K. E. Galbreath). Pho-
tosyntype and photoparatype of sporulated oocysts are in the USNPC,
nos. 87480 and 88170, respectively.

Remarks: The morphology of E. cryptobarretti from O. hyperborea
in Russia and O. collaris in Alaska is similar to the description by
Duszynski and Brunson (1973) for the same species collected from O.
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TABLE I. Ten studies documenting the presence of coccidia (Eimeria, Isospora spp.) in pikas (Ochotona spp.) from 2 continents.

Coccidia species

North America

O. collaris O. princeps

Asia

O. dauurica O. hyperborea O. pallasi O. rufescens

E. balchanica — — — — — 4*
E. banffensis 5 1, 3, 5, 7 — 5, 10 — —
E. barretti 5 5, 6 — — — —
E. calentinei 5, 10 1, 3, 5 — 5, 10 — —
E. circumborealis 5 — — 5 — —
E. cryptobarretti 10 1, 3 — 10 — —
E. daurica — — 8 — — —
E. erschovi — — 8 — 9 —
E. klondikensis 5, 10 1, 5 — 5, 10 — —
E. metelkini — — 8 — — —
E. ochotona — — 8 — — —
E. pallasi — — — — 6 —
E. princeps 5 1, 3, 5 — 5 — —
E. shubini — — — — 6 —
E. worleyi — 1, 6 — 5 — —
E. sp. — — — — 6 —
I. marquardti 5 1, 2, 5 — 10 — —
I. yukonensis 5 — — — — —

* 1. Duszynski, 1974; 2. Duszynski and Brunson, 1972; 3. Duszynski and Brunson, 1973; 4. Glebezdin, 1978; 5. Hobbs and Samuel, 1974; 6. Lepp et al., 1972; 7.
Lepp et al., 1973; 8. Machulsky, 1949; 9. Svanbaev, 1958; 10. Present study.

princeps in Colorado, U.S.A. The recovery of E. cryptobarretti estab-
lishes new host and geographic records for this parasite in Russia and
Alaska, U.S.A. The authors of the original description hesitated to state
if there was a micropyle on the oocyst, but we now believe that E.
cryptobarretti does indeed have one.

Eimeria klondikensis Hobbs and Samuel, 1974

Type host: O. collaris (Nelson, 1893), collared pika.
Other hosts (this study): O. hyperborea.
Type locality: North America: Canada: Yukon Territory, Ogilvie

Mountains, 64%N, 138%W.
Geographic distribution: North America: Canada: Yukon Territory,

Ogilvie Mountains, 64%N, 138%W; Alberta, 51%N, 115%W; U.S.A.: Col-
orado: Clear Creek County; Alaska: Wrangell-St. Elias National Park
and Preserve, SE of Rock Lake, 21 July 2001, 61%47&N, 141%12&W (this
study); Yukon-Charley Rivers National Preserve (this study); Asia: Ja-
pan: Hokkaido, Daisetzusan National Park; Russia: Siberia, Chukotka,
3 km SSE of confluence of Volchya River and Liman Sea, 64%48&N,
177%33&E (this study).

Prevalence: 2/53 (4%) O. collaris in Alaska (this study); 3/92 (3%)
O. collaris (type host) in Yukon Territory; 1/35 (3%) O. hyperborea in
Siberia (this study); 2/14 (14%) O. hyperborea in Japan; 7/111 (6%)
O. princeps in Alberta; 62/224 (28%) O. princeps in Colorado.

Material deposited: Skin, skull, skeleton, and tissues of 2 symbiotype
hosts, one for each host species from this study, are preserved in the
UAM: O. collaris, UAM no. 56067 (AF 54551), female, 21 July 2001
(collected by S. Kutz, A. Tsvetkova, A. A. Eddingaas, M. McCain) and
O. hyperborea, UAM no. 84369 (IF 5253), male, 11 August 2002 (col-
lected by N. E. Dokuchaev, A. A. Tsvetkova). We deposited a photo-
neotype of a sporulated oocyst in the USNPC as no. 99671, because no
previous authors had archived a type specimen of this parasite.

Remarks: The morphology of E. klondikensis from O. collaris in
Alaska and O. hyperborea in Russia is similar to the description pro-
vided by Hobbs and Samuel (1974) for the same species collected and
described from the same hosts in Canada and Japan, respectively. The
recovery of E. klondikensis establishes new geographic records for this
parasite in Russia and Alaska, U.S.A. Both a line drawing and a pho-
tomicrograph of the sporulated oocyst of this species appeared in the
original description.

Isospora marquardti Duszynski and Brunson, 1972

Type host: O. princeps (Richardson, 1828), American pika.
Other hosts (this study): O. hyperborea.
Type locality: North America: U.S.A.: Colorado, Ft. Collins, Clear

Creek, and Larimer counties.
Geographic distribution: North America: U.S.A.: Colorado, Ft. Col-

lins, Clear Creek, and Larimer counties; Canada: Yukon Territory, Ogil-
vie Mountains, 64%N, 138%W; Alberta, 51%N, 115%W; Asia: Russia: Si-
beria, Chukotka, Ulhum River, 15 km W of Chaplino Village, 64%25&N,
172%32&E (this study).

Prevalence: 1/92 (1%) O. collaris in the Yukon Territory (this study);
1/35 (3%) O. hyperborea in Siberia (this study); 1/111 (!1%) O. prin-
ceps in Alberta; 25/167 (15%) O. princeps (type host) in Colorado.

Material deposited: Skull, skeleton, and tissues of a symbiotype host
from this study are preserved in the UAM as UAM no. 83836 (IF 7569),
female, 28 July 2002 (collected by V. F. Fedorov, K. E. Galbreath).
Photosyntype of a sporulated oocyst is in the USNPC as no. 87408.

Remarks: The morphology of sporulated oocysts of I. marquardti
from O. hyperborea in Russia differ slightly from those of Duszynski
and Brunson (1972) collected and described from O. princeps in Col-
orado; the latter had oocysts and sporocysts that were larger in both
length and width (31 ( 30 and 19 ( 12 vs. 28 ( 27 and 17 ( 11)
than those of our Russian specimens. Still, both oocysts and sporocysts
reported here were larger than those measured by Hobbs and Samuel
(1974) from O. collaris (23 ( 22 and 15 ( 9). Oocysts of some species
are known to exhibit phenotypic plasticity (see Duszynski et al., 1992)
and, given the similarity of qualitative data, we believe these oocysts
are I. marquardti. The recovery of I. marquardti establishes a new host
and geographic record for this parasite in Russia.

Machulsky (1949) published the first paper on coccidia in pikas.
Since then, 9 additional papers, including this one, have described a
total of 18 coccidia species in 6 Ochotona species: 2 from North Amer-
ican and 4 from Asia (Table I). The coccidia reported from 3 of those
6 hosts, O. collaris, O. princeps, and O. hyperborea, which are the best
studied hosts (Table I), are remarkably similar. These hosts have all
been studied on multiple occasions and 10 coccidia have been reported
from them. Six of 10 (60%) coccidia have been reported from all 3
hosts, whereas 3 others have been reported from at least 2 hosts. One
species, Isospora yukonensis, has been reported from only a single in-
dividual of O. collaris (Hobbs and Samuel, 1974). The overlap of coc-



RESEARCH NOTES 1233

cidia species among O. collaris, O. hyperborea, and O. princeps sug-
gests the possibility that these coccidia may have evolved from a com-
mon ancestor, i.e., that shared coccidia faunas in 3 closely related pika
species may reflect a single origin for the parasites in their common
ancestor. On the other hand, this pattern may indicate that each coccid-
ium had a common ancestor in the ancestor of the pikas. Thus, the
parasite community may have a recent origin, but this doesn’t say any-
thing about relationships among these coccidia.

Except for Eimeria erschovi Machulsky, 1949, the 7 coccidia iden-
tified from the remaining Asian pikas, Ochotona dauurica (Eimeria
daurica, Eimeria metelkini, Eimeria ochotona, in 1949), Ochotona pal-
lasi (Eimeria pallasi, Eimeria shubini, Eimeria sp., in 1958), and Och-
otona rufescens (Eimeria balchanica, in 1978), only have been identi-
fied once, each from 2–3 specimens of their single host species. Initially,
the lack of overlap indicates that these coccidia may be more host-
species specific, but nothing substantive is known about host specificity
in pika coccidia. On the other hand, given the known distributions of
the 3 host species, it is unlikely that these coccidia would ever come
into contact with an Ochotona species different from the one in which
it was first described; O. rufescens, the Afghan pika, is geographically
separated from the other 2 species and, although the ranges of O. dauur-
ica and O. pallasi share some overlap, e.g., Mongolia, these species are
separated both by altitude and biome (high mountain vs. desert, respec-
tively). In addition, the obvious sampling bias doesn’t allow meaningful
comparisons. Finally, the question must be asked whether any of these
7 coccidia even still exist since 2 of the 3 host species are either en-
dangered (O. pallasi) or threatened (O. rufescens).

Our a posteriori hypothesis was that the similarity, or disparity, of
coccidia infecting pikas would reflect the systematics and phylogenetics
of the hosts. Work by Yu et al. (2000) on the phylogeny of 19 pika
species included O. hyperborea, O. princeps, O. pallasi, and O. dauur-
ica; sequences from O. collaris and O. rufescens were not incorporated.
The data of Yu et al. (2000) indicated that there are 3 pika clades: a
shrub-steppe group of 7 species (including O. dauurica), a northern
group of 5 species (including O. hyperborea, O. pallasi, and O. prin-
ceps), and a mountain group of 7 species. Host–parasite data to date
(Table I) support the notion that O. hyperborea and O. princeps may
be infected by the same coccidia because they have descended from a
recent common ancestor. If true, this would predict that the same or
similar coccidia species will be found in other species from the northern
group of Yu et al. (2000). In other words, the morphological similarity
of the coccidia in this study might reflect close phylogenetic relation-
ships that are a consequence of the close relationship between the hosts.

The data of Yu et al. (2000) posit that O. princeps is the most basal
member of the northern group. Interestingly, O. pallasi is infected by
an entirely different set of coccidia from other hosts in the northern
clade. In fact, O. pallasi is infected by E. erschovi, a coccidium first
identified from O. dauurica, a member of the shrub-steppe group of
pikas. Despite an older association between O. dauurica and O. pallasi,
it is possible that E. erschovi is a generalist parasite capable of a broad
co-accommodation of hosts (Brooks, 1979). In other words, the asso-
ciation between E. erschovi and 2 deeply divergent pika lineages may
suggest the generalist nature of this coccidium. These hosts are in rel-
atively close contact as the range of O. pallasi overlaps that of O.
dauurica, although they occupy different habitats (Chapman and Flux,
1990); unfortunately, it is not known if any burrowing or talus-dwelling
pikas live in enough proximity to connect these pika lineages. Perhaps
the other Eimeria spp. identified from O. pallasi (Eimeria pallasi, Ei-
meria shubini, and Eimeria sp.) are more derived (than those infecting
O. princeps) and are results of recent speciation. This would keep the
cospeciation hypothesis alive, but it is also possible that a host switch
could have led to this association. Only phylogenetic (sequence) data
for these coccidia will resolve the relationships among them.

It also is recognized that the dichotomy seen in Table I, where 3
hosts overlap in eimeriid fauna and the other 3 hosts have divergent
fauna, could be the result of poor species descriptions. Both Hobbs and
Samuel (1974) and Lepp et al. (1972) addressed this possibility. Hobbs
and Samuel (1974) noted the extreme similarity between many of the
‘‘continental Asian’’ and the ‘‘North American’’ coccidia. In all cases,
there were enough differences among those coccidia to prevent the syn-
onymy of species. Before conclusions can be made regarding the valid-
ity of species descriptions, more Asian pikas must be surveyed. Finding
evidence for cryptic species of coccidia in pikas also could be an im-

portant issue for sorting out the origins of their host–parasite associa-
tions.

In conclusion, we emphasize 3 major points: (1) the similarity in
coccidia fauna among O. princeps, O. collaris, and O. hyperborea; (2)
the different and more diverse coccidia parasites in Asian hosts; and
(3) the apparent widespread species of coccidia found in pikas repre-
senting 2 different host clades.
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A Ribeiroia Spp. (Class: Trematoda)–-Specific PCR-Based Diagnostic
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TABLE I. Oligonucleotides and PCR profiles used to detect Ribeiroia sp.

Primer Sequence Tm % GC Use/product size

21-up AGTCATGGTGAGGTGCAGTGA 59.7 52.4 with 18-dn, 290 bp, profile 1
18-dn AGACCGCTTAGATAGCAG 51.4 50.0 with 21-up, 290 bp, profile 1
18-up CGTGTTTGGCGATTTAGT 51.4 44.4 Nested reaction with 19-dn, 164 bp, profile 2
19-dn TCAAAAATGAAGCAACAGT 49.1 31.6 Nested reaction with 18-up, 164 bp, profile 2

Profile 1

1X 94 C 4 min
94 C 15 sec 94 C 15 sec

10X 59 C 30 sec 26X 59 C 30 sec 1X 72 C 7 min
72 C 45 sec 72 C 90 sec 4 C Hold

Profile 2. As above except anneal at 53 C versus 59 C.

ABSTRACT: Increased reporting of amphibian malformations in North
America has been noted with concern in light of reports that amphibian
numbers and species are declining worldwide. Ribeiroia ondatrae has
been shown to cause a variety of types of malformations in amphibians.
However, little is known about the prevalence of R. ondatrae in North
America. To aid in conducting field studies of Ribeiroia spp., we have
developed a polymerase chain reaction (PCR)-based diagnostic. Herein,
we describe the development of an accurate, rapid, simple, and cost-
effective diagnostic for detection of Ribeiroia spp. infection in snails
(Planorbella trivolvis). Candidate oligonucleotide primers for PCR were
designed via DNA sequence analyses of multiple ribosomal internal
transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp.
Comparison of consensus sequences determined from both genera iden-
tified areas of sequence potentially unique to Ribeiroia spp. The PCR
reliably produced a diagnostic 290-base pair (bp) product in the pres-
ence of a wide concentration range of snail or frog DNA. Sensitivity
was examined with DNA extracted from single R. ondatrae cercaria.
The single-tube PCR could routinely detect less than 1 cercariae equiv-
alent, because DNA isolated from a single cercaria could be diluted at
least 1:50 and still yield a positive result via gel electrophoresis. An
even more sensitive nested PCR also was developed that routinely de-
tected 100 fg of the 290-bp fragment. The assay did not detect furco-
cercous cercariae of certain Schistosomatidae, Echinostoma sp., or
Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathoco-
tyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives
with no overt environmental cross-reactivity, and results concurred with
microscopic examinations in all cases.

Concern over declining numbers and species of amphibians has come
to the forefront over the past 20 yr (Barinaga, 1990; Blaustein and
Wake, 1990; Phillips, 1990; Pechmann et al., 1991; Wake, 1998). Sug-
gested factors, singly or in synergism, that have been hypothesized as
reasons for the decline of this class of animals include habitat destruc-
tion (Kolozsvary and Swihart, 1999; Houlahan and Findlay, 2003), UV

irradiation (Blaustein et al., 1998, 2003), introduced species (Knapp and
Mathews, 2000), climate change (Beebee, 1995; Corn, 2005), and var-
ious pathogens (Daszak et al., 2003). A current review of the factors is
found in Beebee and Griffiths (2005). Amphibian malformations are of
growing concern, because they have been observed with increased prev-
alence in North America (Ouellet, 2000). Although malformations have
the potential to deleteriously affect populations or species at particular
sites, they have not been empirically linked to global or regional de-
clines. Recent reports (Johnson et al., 1999, 2002; Lannoo et al., 2003;
Schoff et al., 2003; Schotthoefer et al., 2003) have implicated the trem-
atode Ribeiroia ondatrae as a causative agent of some types of mal-
formations. Little is known about the distribution of this parasite in its
hosts within North America. Wilson et al. (2005) identified 3 species
of Ribeiroia: R. ondatrae within the Americas; R. marini in the Carrib-
bean, and Cercaria lileta in Africa. Ribeiroia ondatrae has a 3-host life
cycle with 2 aquatic intermediate hosts and a predator definitive host,
usually a bird or mammal. Planorbella spp. serves as first intermediate
host, with fish and various amphibians as second intermediate hosts.
Exogenous factors, which include pesticides (Kiesecker, 2002), and eu-
trophication, which leads to a dominance of Planorbella spp. (Johnson
and Chase, 2004), have been shown to increase malformation rates.
Currently, Ribeiroia spp. infections in the first intermediate host are
diagnosed by dissection of live or freshly dead snail hosts for various
larval stages, which requires training and substantial time to locate in-
fected tissues to identify the parasite correctly. Identifying larvae early
in development after miracidial penetration but before the development
of the cercariae is difficult, if not impossible, using morphological char-
acters. To increase the speed and accuracy in the examination of large
numbers of snails for the presence of Ribeiroia spp., to reduce labor
costs, and to simplify training required, we have developed a genus-
specific polymerase chain reaction (PCR)-based diagnostic that targets
the second internal transcribed spacer (ITS-2) region of the ribosomal
RNA gene cluster (Morgan and Blair, 1998; Kostadinova et al., 2003;
Wilson et al., 2005). By using various combinations of 4 oligonucleo-
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